首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2332篇
  免费   122篇
  国内免费   1篇
  2021年   13篇
  2018年   27篇
  2017年   16篇
  2016年   33篇
  2015年   38篇
  2014年   61篇
  2013年   264篇
  2012年   111篇
  2011年   103篇
  2010年   65篇
  2009年   71篇
  2008年   117篇
  2007年   135篇
  2006年   122篇
  2005年   124篇
  2004年   124篇
  2003年   125篇
  2002年   143篇
  2001年   26篇
  2000年   26篇
  1999年   27篇
  1998年   38篇
  1997年   29篇
  1996年   24篇
  1995年   27篇
  1994年   24篇
  1993年   33篇
  1992年   22篇
  1991年   31篇
  1990年   24篇
  1989年   15篇
  1988年   18篇
  1987年   21篇
  1986年   10篇
  1985年   25篇
  1984年   24篇
  1983年   24篇
  1982年   27篇
  1981年   33篇
  1980年   20篇
  1979年   23篇
  1978年   27篇
  1977年   15篇
  1976年   16篇
  1975年   10篇
  1974年   16篇
  1973年   12篇
  1972年   11篇
  1968年   10篇
  1967年   10篇
排序方式: 共有2455条查询结果,搜索用时 15 毫秒
311.
The chemical investigation of leaves of Bridelia glauca f. balansae afforded six megastigmane glucosides, named bridelionosides A-F, along with seven known megastigmane glucosides. Their structures were determined by a combination of spectroscopic analyses and by application of the modified Mosher's method.  相似文献   
312.
Hematopoietic stem and progenitor cells (HSPC), attracted by the chemokine CXCL12, reside in specific niches in the bone marrow (BM). HSPC migration out of the BM is a critical process that underlies modern clinical stem cell transplantation. Here we demonstrate that enforced HSPC egress from BM niches depends critically on the nervous system. UDP-galactose ceramide galactosyltransferase-deficient (Cgt(-/-)) mice exhibit aberrant nerve conduction and display virtually no HSPC egress from BM following granulocyte colony-stimulating factor (G-CSF) or fucoidan administration. Adrenergic tone, osteoblast function, and bone CXCL12 are dysregulated in Cgt(-/-) mice. Pharmacological or genetic ablation of adrenergic neurotransmission indicates that norepinephrine (NE) signaling controls G-CSF-induced osteoblast suppression, bone CXCL12 downregulation, and HSPC mobilization. Further, administration of a beta(2) adrenergic agonist enhances mobilization in both control and NE-deficient mice. Thus, these results indicate that the sympathetic nervous system regulates the attraction of stem cells to their niche.  相似文献   
313.
Hepatitis C virus (HCV) core protein has been suggested to play crucial roles in the pathogeneses of liver steatosis and hepatocellular carcinomas due to HCV infection. Intracellular HCV core protein is localized mainly in lipid droplets, in which the core protein should exert its significant biological/pathological functions. In this study, we performed comparative proteomic analysis of lipid droplet proteins in core-expressing and non-expressing hepatoma cell lines. We identified 38 proteins in the lipid droplet fraction of core-expressing (Hep39) cells and 30 proteins in that of non-expressing (Hepswx) cells by 1-D-SDS-PAGE/MALDI-TOF mass spectrometry (MS) or direct nanoflow liquid chromatography-MS/MS. Interestingly, the lipid droplet fraction of Hep39 cells had an apparently lower content of adipose differentiation-related protein and a much higher content of TIP47 than that of Hepswx cells, suggesting the participation of the core protein in lipid droplet biogenesis in HCV-infected cells. Another distinct feature is that proteins involved in RNA metabolism, particularly DEAD box protein 1 and DEAD box protein 3, were detected in the lipid droplet fraction of Hep39 cells. These results suggest that lipid droplets containing HCV core protein may participate in the RNA metabolism of the host and/or HCV, affecting the pathopoiesis and/or virus replication/production in HCV-infected cells.  相似文献   
314.
The p53 tumor suppressor is activated in the cellular response to genotoxic stress. Transactivation of p53 target genes dictates cell cycle arrest and DNA repair or induction of apoptosis; however, a molecular mechanism responsible for these distinct functions remains unclear. Recent studies revealed that phosphorylation of p53 on Ser(46) was associated with induction of p53AIP1 expression, resulting in the commitment of the cell fate into apoptotic cell death. Moreover, upon exposure to genotoxic stress, p53DINP1 was expressed and recruited a kinase(s) to p53 that specifically phosphorylated Ser(46). Here, we show that the pro-apoptotic kinase, protein kinase C delta (PKCdelta), is involved in phosphorylation of p53 on Ser(46). PKCdelta-mediated phosphorylation is required for the interaction of PKCdelta with p53. The results also demonstrate that p53DINP1 associates with PKCdelta upon exposure to genotoxic agents. Consistent with these results, PKCdelta potentiates p53-dependent apoptosis by Ser(46) phosphorylation in response to genotoxic stress. These findings indicate that PKCdelta regulates p53 to induce apoptotic cell death in the cellular response to DNA damage.  相似文献   
315.
To characterize the sugar translocation pathway of Na(+)/glucose cotransporter type 1 (SGLT1), a chimera was made by substituting the extracellular loop between transmembrane domain (TM) 12 and TM13 of Xenopus SGLT1-like protein (xSGLT1L) with the homologous region of rabbit SGLT1. The chimera was expressed in Xenopus oocytes and its transport activity was measured by the two-microelectrode voltage-clamp method. The substrate specificity of the chimera was different from those of xSGLT1L and SGLT1. In addition the chimera's apparent Michaelis-Menten constant (K(m)) for myo-inositol, 0.06 mM, was about one fourth of that of xSGLT1L, 0.25 mM, while the chimera's apparent K(m) for d-glucose, 0.8 mM, was about one eighth of that of xSGLT1L, 6.3 mM. Our results suggest that the extracellular loop between TM12 and TM13 participates in the sugar transport of SGLT1.  相似文献   
316.
We previously found that phosphatidylglucoside (PtdGlc), a novel glycolipid expressed in HL60 cells, plays a role in forming signaling microdomains involved in cellular differentiation. Because cells contain minute levels of PtdGlc, pure PtdGlc is very difficult to isolate. Thus, its complete structure has never been assessed. To aid in analyzing PtdGlc, we generated a PtdGlc-specific monoclonal antibody, DIM21, by immunizing mice with detergent-insoluble membranes isolated from HL60 cells [Yamazaki, Y., et al. (2006) J. Immunol. Methods 311, 106-116]. DIM21 immunostaining of murine CNS tissues revealed stage- and cell type-specific localization of the DIM21 antigen during development, with especially high levels of expression in radial glia/astroglia. DIM21 immunostained cultured hippocampal astroglia in a punctate fashion. To characterize the structure of PtdGlc, we isolated DIM21 antigen from fetal brains. Using successive column chromatography, we purified two previously unrecognized glycolipids, PGX-1 and PGX-2, from embryonic day 21 rat brains. DIM21 reacted more strongly to PGX-2 than to PGX-1. Structural analyses with 600 MHz (1)H NMR, FT-ICR mass spectrometry, and GC revealed that PGX-1 is phosphatidyl beta-d-(6-O-acetyl)glucopyranoside and PGX-2 is phosphatidyl beta-d-glucopyranoside. The yields of PGX-1 and PGX-2 were approximately 250 +/- 150 and 440 +/- 270 nmol/g of dried brains, respectively. Surprisingly, both glycolipids were composed exclusively of C18:0 at the C1 position and C20:0 at the C2 position of the glycerol backbone. This saturated fatty acyl chain composition comprising a single molecular species rarely occurs in known mammalian lipids and provides a molecular basis for why PtdGlc resides in raftlike lipid microdomains.  相似文献   
317.
Pulmonary surfactant protein D (SP-D), a member of the collectin group of innate immune proteins, plays important roles in lipopolysaccharide (LPS) recognition. We have previously shown that surfactant protein A (SP-A), a homologous collectin, interacts with Toll-like receptor (TLR) 2, resulting in alteration of TLR2-mediated signaling. In this study, we found that natural and recombinant SP-Ds exhibited specific binding to the extracellular domains of soluble forms of recombinant TLR2 (sTLR2) and TLR4 (sTLR4). Binding was concentration- and Ca2+-dependent, and SP-D bound to N-glycosidase F-treated sTLRs on ligand blots. Anti-SP-D monoclonal antibody 7A10 blocked binding of SP-D to sTLR2 and sTLR4, but there was no inhibitory effect of monoclonal 7C6. Epitope mapping with recombinant proteins consisting of the carbohydrate recognition domain (CRD) and the neck domain plus CRD (NCRD) localized binding sites for 7A10 and 7C6 to sequential epitopes associated with the CRD and the neck domain, respectively. Interactions with 7A10 but not 7C6 were blocked by prior binding of the NCRD to sTLRs. Although antibody 7A10 significantly inhibited the binding of SP-D to its major surfactant-associated ligand, phosphatidylinositol (PI), and Escherichia coli Rc LPS, 7C6 enhanced binding to both molecules. An SP-D(E321Q, N323D) mutant with altered carbohydrate specificity exhibited attenuated PI binding but showed an increased level of binding to sTLRs. Thus, human SP-D binds the extracellular domains of TLR2 and TLR4 through its CRD by a mechanism different from its binding to PI and LPS.  相似文献   
318.
319.
Global Gene Expression Analysis of Yeast Cells during Sake Brewing   总被引:2,自引:0,他引:2       下载免费PDF全文
During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process.  相似文献   
320.
FK506-binding proteins are the peptidyl prolyl cis-trans isomerases that are involved in various intracellular events. We characterized a novel mouse FK506-binding protein homolog, FKBP133/KIAA0674, in the developing nervous system. FKBP133 contains a domain similar to Wiskott-Aldrich syndrome protein homology region 1 (WH1) and a domain homologous to FK506-binding protein motif. FKBP133 was predominantly expressed in cerebral cortex, hippocampus, and peripheral ganglia at embryonic day 18.5. FKBP133 protein was distributed in the axonal shafts and was partially co-localized with F-actin in the growth cones of dorsal root ganglion neurons (DRG). The number of filopodia was increased in the DRG neurons overexpressing FKBP133. In contrast, the overexpression of a mutant deleted the WH1 domain reduced the growth cone size and the number of filopodia. Furthermore, the neurons overexpressing FKBP133 became significantly resistant to Semaphorin-3A induced collapse response. These results suggest that FKBP133 modulates growth cone behavior with the WH1 domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号