首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   27篇
  2022年   1篇
  2020年   1篇
  2013年   4篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   11篇
  2002年   8篇
  2001年   8篇
  2000年   11篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   1篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
21.
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.  相似文献   
22.
Platinum coordination compounds are among the most utilized anticancer agents, even though platinum has not been determined to be an essential trace element in any living organism. The success of platinum-based drugs has catalyzed research on other metal-containing agents that can be used to achieve therapeutic goals that cannot be achieved with organic compounds. The antitumor activities of recently reported platinum(ii) complexes indicate that further modification of platinum coordination compounds will lead to the development of anticancer agents with higher efficacies against chemotherapy-insensitive tumors.  相似文献   
23.
Komeda H  Asano Y 《The FEBS journal》2005,272(12):3075-3084
We have determined the nucleotide sequence of a DNA fragment covering the flanking region of the R-stereoselective amidase gene, ramA, from the Pseudomonas sp. MCI3434 genome and found an additional gene, bapA, coding for a protein showing sequence similarity to DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 (43% identity). The DmpA (called L-aminopeptidase D-Ala-esterase/amidase) hydrolyzes alanine-p-nitroanilide, alaninamide, and alanine methylester with a preference for the D-configuration of the alanine, whereas the enzyme acts as an L-stereoselective aminopeptidase on a tripeptide Ala-(Gly)2, indicating a reverse stereoselectivity [Fanuel L, Goffin C, Cheggour A, Devreese B, Van Driessche G, Joris B, Van Beeumen J & Frère J-M (1999) Biochem J341, 147-155]. A recombinant BapA exhibiting hydrolytic activity toward D-alanine-p-nitroanilide was purified from the cell-free extract of an Escherichia coli transformant overexpressing the bapA gene and characterized. The purified enzyme contained two polypeptides corresponding to residues 1-238 (alpha-peptide) and 239-366 (beta-peptide) of the precursor as observed for DmpA. On gel-filtration chromatography, BapA in the native form appeared to be a tetramer. It had maximal activity at 60 degrees C and pH 9.0-10.0, and was inactivated in the presence of p-chloromercuribenzoate, N-ethylmaleimide, dithiothreitol, Zn2+, Ag+, Cd2+ or Hg2+. The enzyme hydrolyzed D-alanine-p-nitroanilide more efficiently than L-alanine-p-nitroanilide the same as DmpA. Furthermore, BapA was found to hydrolyze peptide bonds of beta-alanyl dipeptides including beta-Ala-L-Ala, beta-Ala-Gly, beta-Ala-L-His (carnosine), beta-Ala-L-Leu, and (beta-Ala)2 with high efficiency compared to D-alanine-p-nitroanilide. Beta-alaninamide was also efficiently hydrolyzed, but the enzyme did not act on the peptides containing proteinogenic amino acids or their D-counterparts for N-terminal residues. Based on its unique substrate specificity, the enzyme should not be called L-aminopeptidase D-Ala-esterase/amidase but beta-Ala-Xaa dipeptidase.  相似文献   
24.
Here, we describe the 1.6-A X-ray structure of the DDD (Dickerson-Drew dodecamer), which has been covalently modified by the tethering of four cationic charges. This modified version of the DDD, called here the DDD(4+), is composed of [d(CGCGAAXXCGCG)](2), where X is effectively a thymine residue linked at the 5 position to an n-propyl-amine. The structure was determined from crystals soaked with thallium(I), which has been broadly used as a mimic of K(+) in X-ray diffraction experiments aimed at determining positions of cations adjacent to nucleic acids. Three of the tethered cations are directed radially out from the DNA. The radially directed tethered cations do not appear to induce structural changes or to displace counterions. One of the tethered cations is directed in the 3' direction, toward a phosphate group near one end of the duplex. This tethered cation appears to interact electrostatically with the DNA. This interaction is accompanied by changes in helical parameters rise, roll, and twist and by a displacement of the backbone relative to a control oligonucleotide. In addition, these interactions appear to be associated with displacement of counterions from the major groove of the DNA.  相似文献   
25.
The methylotrophic yeast Ogataea minuta IFO 10746 was selected as a suitable strain for producing human-compatible glycoproteins by means of analyses of its cell-wall mannoproteins. First, the OmURA3 gene encoding an orotidine-5'-phosphate decarboxylase was cloned and disrupted to generate a host strain with a uracil auxotrophic marker. Second, both the promoters and the terminators from the OmAOX1 gene encoding an alcohol oxidase for an inducible promoter, or those from the OmTDH1 gene encoding a glyceraldehyde-3-phosphate dehydrogenase for a constitutive promoter, were isolated to construct an expression vector system for heterologous genes. Next, the OmOCH1 gene encoding a starting enzyme with alpha-1,6-mannosyltransferase activity to form a backbone of the N-linked outer sugar chain peculiar to yeast was disrupted, and an alpha-1,2-mannosidase gene from Aspergillus saitoi with an endoplasmic reticulum retention signal (HDEL) under the control of the OmAOX1 promoter was introduced to convert the sugar chain to Man5GlcNAc2 in O. minuta. As a result, we succeeded in breeding a new methylotrophic yeast, O. minuta, producing a Man5GlcNAc2-high-mannose-type sugar chain as a prototype of a human-compatible sugar chain. We also elucidate here the usefulness of the strategy for producing human-compatible sugar chains in yeast.  相似文献   
26.
27.
Anthranilate synthase (AS) is a key enzyme in tryptophan (Trp) biosynthesis. Metabolic changes in transgenic Arabidopsis plants expressing the feedback-resistant anthranilate synthase alpha subunit gene OASA1D were investigated with respect to Trp synthesis and effects on secondary metabolism. The Trp content varied depending on the transgenic line, with some lines showing an approximately 200-fold increase. The levels of AS activity in crude extracts from the transgenic lines were comparable to those in the wild type. On the other hand, the enzyme prepared from the lines accumulating high levels of Trp showed a relaxed feedback sensitivity. The AS activity, determined in the presence of 50 microM L-Trp, correlated well with the amount of free Trp in the transgenic lines, indicating the important role of feedback inhibition in control of Trp pool size. In Arabidopsis, Trp is a precursor of multiple secondary metabolites, including indole glucosinolates and camalexin. The amount of indol-3-ylmethyl glucosinolate (I3 M) in rosette leaves of the high-Trp accumulating lines was 1.5- to 2.1-fold greater than that in wild type. The treatment of the leaves with jasmonic acid resulted in a more pronounced accumulation of I3 M in the high-Trp accumulating lines than in wild type. The induction of camalexin formation after the inoculation of Alternaria brassicicola was not affected by the accumulation of a large amount of Trp. The accumulation of constitutive phenylpropanoids and flavonoids was suppressed in high-Trp accumulating lines, while the amounts of Phe and Tyr increased, thereby indicating an interaction between the Trp branch and the Phe and Tyr branch in the shikimate pathway.  相似文献   
28.
The 1.7 Å X-ray crystal structure of the B-DNA dodecamer, [d(CGCGAATTCGCG)]2 (DDD)-bound non-covalently to a platinum(II) complex, [{Pt(NH3)3}2-µ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)6 (1, TriplatinNC-A,) shows the trinuclear cation extended along the phosphate backbone and bridging the minor groove. The square planar tetra-am(m)ine Pt(II) units form bidentate N-O-N complexes with OP atoms, in a Phosphate Clamp motif. The geometry is conserved and the interaction prefers O2P over O1P atoms (frequency of interaction is O2P > O1P, base and sugar oxygens > N). The binding mode is very similar to that reported for the DDD and [{trans-Pt(NH3)2(NH2(CH2)6(NH3+)}2-µ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)8 (3, TriplatinNC), which exhibits in vivo anti-tumour activity. In the present case, only three sets of Phosphate Clamps were found because one of the three Pt(II) coordination spheres was not clearly observed and was characterized as a bare Pt2+ ion. Based on the electron density, the relative occupancy of DDD and the sum of three Pt(II) atoms in the DDD-1 complex was 1:1.69, whereas the ratio for DDD-2 was 1:2.85, almost the mixing ratio in the crystallization drop. The high repetition and geometric regularity of the motif suggests that it can be developed as a modular nucleic acid binding device with general utility.  相似文献   
29.
A detailed study of the expression of the promoter of the HSP18.2 gene from Arabidopsis fused to the bacterial gene for β-glucuronidase (GUS) in transgenic Arabidopsis plants is described. High levels of GUS activity were induced in all organs of transformants except for seeds during heat shock. The optimum temperature for expression of GUS in Arabidopsis was 35°C regardless of the plant growth temperature. Heat shock of 40°C did not induce any detectable levels of GUS activity. Pre-incubation at 35°C was found to have a protective effect on the induction of GUS activity at 40°C. GUS activity was also increased in response to a gradual increase in temperature. Histochemical analysis revealed that basal levels of GUS activity were induced in the vascular tissue of leaves and sepals, as well as at the tips of carpels, at the normal growth temperature. Heat treatment of a limited part of the plant tissue did not appear to cause systemic induction of GUS activity. To extend the analysis of the plant heat-shock response, we attempted to screen mutations in genes involved in the regulation of the induction of heat-shock protein (HSP) genes, using the GUS gene as a selection marker in transgenic Arabidopsis plants, and the results of this analysis are described.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号