首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2518篇
  免费   162篇
  国内免费   1篇
  2681篇
  2023年   5篇
  2022年   14篇
  2021年   32篇
  2020年   14篇
  2019年   34篇
  2018年   47篇
  2017年   36篇
  2016年   49篇
  2015年   81篇
  2014年   109篇
  2013年   184篇
  2012年   158篇
  2011年   196篇
  2010年   113篇
  2009年   109篇
  2008年   189篇
  2007年   174篇
  2006年   177篇
  2005年   148篇
  2004年   157篇
  2003年   151篇
  2002年   148篇
  2001年   15篇
  2000年   27篇
  1999年   36篇
  1998年   35篇
  1997年   26篇
  1996年   19篇
  1995年   12篇
  1994年   21篇
  1993年   16篇
  1992年   22篇
  1991年   15篇
  1990年   16篇
  1989年   16篇
  1988年   19篇
  1987年   10篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1959年   1篇
排序方式: 共有2681条查询结果,搜索用时 15 毫秒
71.
P-glycoprotein (P-gp) is a 170 kDa membrane protein that belongs to the ATP-binding cassette (ABC) transporter superfamily. In normal tissues, P-gp functions as an ATP-dependent efflux pump that excretes highly hydrophobic xenobiotic compounds, playing an important role in protecting the cells/tissues from xenobiotics. In the present study, chemical substances that could directly modulate the intestinal P-gp activity were searched in vegetables and fruits. By using human intestinal epithelial Caco-2 cells as a model of the small intestinal cells, we observed that a bitter melon fraction extracted from 40% methanol showed the greatest increase of the rhodamine-123 accumulation by Caco-2 cells. Inhibitory compounds in the bitter melon fraction were then isolated by HPLC using Pegasil C4 and Pegasil ODS columns. The HPLC fraction having the highest activity was analyzed by (1)H-NMR and FAB-MS, and the active compound was identified as 1-monopalmitin. It is interesting that certain types of monoglyceride might be involved in the drug bioavailability by specifically inhibiting the efflux mediated by P-gp.  相似文献   
72.
The gene encoding a Verotoxin 2 variant, VTvp1, was mutated by oligonucleotide-directed site-specific mutagenesis. Among 6 mutant toxins encoded by the mutated genes, E167Q-R170L (glutamic acid at position 167 and arginine at position 170 from N-terminus of the A subunit were replaced by glutamine and leucine, respectively) was found to have markedly decreased activities; inhibition of protein synthesis, Vero cell cytotoxicity and mouse lethality of the purified E167Q-R170L were 1/1,900, 1/125,000 and 1/2,000, respectively, of those of the purified wild-type VT2vp1. Since the antigenic property of the E167Q-R170L was demonstrated to be similar to that of the wild-type VT2vp1 by Ouchterlony double gel diffusion test and by neutralization test of Vero cell cytotoxicity of the VT2vp1, a possibility to use the mutant VT2vp1, E167Q-R170L, as a toxoid is discussed.  相似文献   
73.

Background

Pulmonary carcinosarcoma (PCS) is a rare primary lung malignancy and has a poor prognosis among lung tumor histological subtypes. However, an appropriate treatment strategy has not been developed for unresectable PCS.

Case presentation

A 65-year-old man who was diagnosed with PCS was treated by surgical removal of the primary lung lesion, followed by six cycles of adjuvant chemotherapy with cisplatin plus irinotecan. Following the chemotherapy, he experienced a relapse with brain metastasis, which induced the rapid onset of left leg paralysis. Radical surgical resection and stereotactic radiosurgery to the resection cavity were performed. However, meningeal dissemination and new lung metastases occurred after a year and half. To control these multiple metastatic lesions, the patient was treated with the multiple kinase inhibitor pazopanib. No change was observed in the meningeal dissemination, while the metastatic lung lesions were prominently reduced in size following treatment with pazopanib. Consequently, the patient showed a partial response to pazopanib treatment, although the dose of pazopanib was reduced by half as a result of thrombocytopenia.

Conclusion

This is the first report of metastatic PCS showing an evident therapeutic response to tumor-targeted therapy. We suggest that pazopanib may be a therapeutic option for patients with metastatic PCS.
  相似文献   
74.
75.
Dendritic cells (DCs) are APCs that play an essential role by bridging innate and adaptive immunity. DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is one of the major C-type lectins expressed on DCs and exhibits high affinity for nonsialylated Lewis (Le) glycans. Recently, we reported the characterization of oligosaccharide ligands expressed on SW1116, a typical human colorectal carcinoma recognized by mannan-binding protein, which is a serum C-type lectin and has similar carbohydrate-recognition specificities as DC-SIGN. These tumor-specific oligosaccharide ligands were shown to comprise clusters of tandem repeats of Lea/Leb epitopes. In this study, we show that DC-SIGN is involved in the interaction of DCs with SW1116 cells through the recognition of aberrantly glycosylated forms of Lea/Leb glycans on carcinoembryonic Ag (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1). DC-SIGN ligands containing Lea/Leb glycans are also highly expressed on primary cancer colon epithelia but not on normal colon epithelia, and DC-SIGN is suggested to be involved in the association between DCs and colorectal cancer cells in situ by DC-SIGN recognizing these cancer-related Le glycan ligands. Furthermore, when monocyte-derived DCs (MoDCs) were cocultured with SW1116 cells, LPS-induced immunosuppressive cytokines such as IL-6 and IL-10 were increased. The effects were significantly suppressed by blocking Abs against DC-SIGN. Strikingly, LPS-induced MoDC maturation was inhibited by supernatants of cocultures with SW1116 cells. Our findings imply that colorectal carcinomas affecting DC function and differentiation through interactions between DC-SIGN and colorectal tumor-associated Le glycans may induce generalized failure of a host to mount an effective antitumor response.  相似文献   
76.
77.
78.
79.
80.
Magnesium-dependent neutral sphingomyelinase (N-SMase) present in plasma membranes is an enzyme that can be activated by stress in the form of inflammatory cytokines, serum deprivation, and hypoxia. The design of small molecule N-SMase inhibitors may offer new therapies for the treatment of inflammation, ischemic injury, and cerebral infarction. Recently, we synthesized a series of difluoromethylene analogues (SMAs) of sphingomyelin. We report here the effects of SMAs on the serum/glucose deprivation-induced death of neuronally differentiated pheochromocytoma (PC-12) cells and on cerebral infarction in mice. SMAs inhibited the enhanced N-SMase activity in the serum/glucose-deprived PC-12 cells, and thereby suppressed the apoptotic sequence: ceramide formation, c-Jun N-terminal kinase phosphorylation, caspase-3 activation, and DNA fragmentation in the nuclei. Administration of SMA-7 (10 mg/kg i.v.) with IC50= 3.3 microM to mice whose middle cerebral arteries were occluded reduced significantly the size of the cerebral infarcts, compared to the control mice. These results suggest that N-SMase is a key component of the signaling pathways in cytokine- and other stress-induced cellular responses, and that inhibiting or stopping N-SMase activity is an important strategy to prevent neuron death from ischemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号