首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   15篇
  271篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   13篇
  2014年   14篇
  2013年   18篇
  2012年   12篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   19篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
51.

Background  

Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.  相似文献   
52.
53.

Background

Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ~200 pigs from different commercial crosses were used to address these objectives.

Results

Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09).

Conclusions

Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease.  相似文献   
54.
Since their discovery, single‐domain antigen‐binding fragments of camelid‐derived heavy‐chain‐only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode‐transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell‐to‐cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.  相似文献   
55.
Regulators of complement activation (RCA) inhibit complement‐induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i–iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b‐binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease‐related mutations and immune evasion.  相似文献   
56.
57.
58.
Synonymous variations, which are defined as codon substitutions that do not change the encoded amino acid, were previously thought to have no effect on the properties of the synthesized protein(s). However, mounting evidence shows that these "silent" variations can have a significant impact on protein expression and function and should no longer be considered "silent". Here, the effects of six synonymous and six non-synonymous variations, previously found in the gene of ADAMTS13, the von Willebrand Factor (VWF) cleaving hemostatic protease, have been investigated using a variety of approaches. The ADAMTS13 mRNA and protein expression levels, as well as the conformation and activity of the variants have been compared to that of wild-type ADAMTS13. Interestingly, not only the non-synonymous variants but also the synonymous variants have been found to change the protein expression levels, conformation and function. Bioinformatic analysis of ADAMTS13 mRNA structure, amino acid conservation and codon usage allowed us to establish correlations between mRNA stability, RSCU, and intracellular protein expression. This study demonstrates that variants and more specifically, synonymous variants can have a substantial and definite effect on ADAMTS13 function and that bioinformatic analysis may allow development of predictive tools to identify variants that will have significant effects on the encoded protein.  相似文献   
59.

Background

One of the main limitations of many livestock breeding programs is that selection is in pure breeds housed in high-health environments but the aim is to improve crossbred performance under field conditions. Genomic selection (GS) using high-density genotyping could be used to address this. However in crossbred populations, 1) effects of SNPs may be breed specific, and 2) linkage disequilibrium may not be restricted to markers that are tightly linked to the QTL. In this study we apply GS to select for commercial crossbred performance and compare a model with breed-specific effects of SNP alleles (BSAM) to a model where SNP effects are assumed the same across breeds (ASGM). The impact of breed relatedness (generations since separation), size of the population used for training, and marker density were evaluated. Trait phenotype was controlled by 30 QTL and had a heritability of 0.30 for crossbred individuals. A Bayesian method (Bayes-B) was used to estimate the SNP effects in the crossbred training population and the accuracy of resulting GS breeding values for commercial crossbred performance was validated in the purebred population.

Results

Results demonstrate that crossbred data can be used to evaluate purebreds for commercial crossbred performance. Accuracies based on crossbred data were generally not much lower than accuracies based on pure breed data and almost identical when the breeds crossed were closely related breeds. The accuracy of both models (ASGM and BSAM) increased with marker density and size of the training data. Accuracies of both models also tended to decrease with increasing distance between breeds. However the effect of marker density, training data size and distance between breeds differed between the two models. BSAM only performed better than AGSM when the number of markers was small (500), the number of records used for training was large (4000), and when breeds were distantly related or unrelated.

Conclusion

In conclusion, GS can be conducted in crossbred population and models that fit breed-specific effects of SNP alleles may not be necessary, especially with high marker density. This opens great opportunities for genetic improvement of purebreds for performance of their crossbred descendents in the field, without the need to track pedigrees through the system.  相似文献   
60.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号