首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   76篇
  国内免费   1篇
  2021年   4篇
  2018年   5篇
  2016年   14篇
  2015年   19篇
  2014年   19篇
  2013年   22篇
  2012年   19篇
  2011年   32篇
  2010年   10篇
  2009年   6篇
  2008年   16篇
  2007年   17篇
  2006年   14篇
  2005年   18篇
  2004年   14篇
  2003年   15篇
  2002年   23篇
  2001年   21篇
  2000年   21篇
  1999年   15篇
  1998年   5篇
  1997年   10篇
  1996年   4篇
  1995年   5篇
  1994年   8篇
  1993年   11篇
  1992年   12篇
  1991年   10篇
  1990年   14篇
  1989年   8篇
  1988年   15篇
  1987年   14篇
  1986年   16篇
  1985年   10篇
  1984年   13篇
  1983年   5篇
  1982年   10篇
  1981年   6篇
  1980年   9篇
  1979年   8篇
  1978年   5篇
  1977年   6篇
  1976年   8篇
  1975年   4篇
  1974年   5篇
  1960年   4篇
  1939年   4篇
  1934年   4篇
  1932年   7篇
  1930年   3篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
531.
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an apple scab resistant selection thought to carry the resistance gene Vr. We report the identification by BSA of three AFLP markers and one RAPD marker associated with the GMAL 2473 resistance gene. SSRs associated with the resistance gene were found by (1) identifying the linkage group carrying the apple scab resistance and (2) testing the SSRs previously mapped in the same region. One such SSR, CH02c02a, mapped on linkage group 2, co-segregates with the resistance gene. GMAL 2473 was tested with molecular markers associated with other apple scab resistance genes, and accessions carrying known apple scab resistance genes were tested with the SSR linked to the resistance gene found in GMAL 2473. The results indicate that GMAL 2473 does not carry Vr, and that a new apple scab resistance gene, named Vr 2, has been identified.  相似文献   
532.
533.
Catalases are essential components of the cellular equipment to cope with oxidative stress. We have purified and characterize herein the most abundant heme-containing catalase-1 from the soil bacterium Comamonas terrigena N3H. This oxidative stress-induced enzyme was isolated from exponential phase cells grown in the presence of peroxyacetic acid. We have used consecutive steps of hydrophobic, molecular sieve, and ion exchange chromatography to achieve a high state of purity for this metalloenzyme. The purified sample of catalase exhibited a specific catalytic activity of 55,900 U/mg, allosteric behavior in peroxidic reaction, a broad pH optimum, and a rather atypical electronic spectrum. The sample of highest purity was subjected to mass spectrometry analysis. The molecular weight of the subunit of this homodimeric protein was determined as 55,417 Da. The Qq-TOF mass analysis method allowed us to sequence short tryptic fragments of this catalase. Five such fragments with a total length of 57 amino acids together with several enzymatic properties allowed the classification of this hydroperoxidase as belonging to clade III of monofunctional catalases. The highest sequence similarity is with the catalase from Vibrio fischeri. The presented results imply the significance of this inducible enzyme in the prevention of toxic effects of oxidative stress for bacterial cells.  相似文献   
534.
535.
Alterations in airway ion transport in NKCC1-deficient mice   总被引:2,自引:0,他引:2  
Airways of Na+-K+-2Cl(NKCC1)-deficient mice (/) were studied in Ussing chambers todetermine the role of the basolateral NKCC1 in transepithelial anionsecretion. The basal short-circuit current (Isc)of tracheae and bronchi from adult mice did not differ betweenNKCC1/ and normal mice, whereas NKCC1/ tracheae from neonatalmice exhibited a significantly reduced basalIsc. In normal mouse tracheae, sensitivity tothe NKCC1 inhibitor bumetanide correlated inversely with the age of themouse. In contrast, tracheae from NKCC1/ mice at all ages wereinsensitive to bumetanide. The anion secretory response to forskolindid not differ between normal and NKCC1/ tissues. However, whenlarger anion secretory responses were induced with UTP, airways fromthe NKCC1/ mice exhibited an attenuated response. Ion substitutionand drug treatment protocols suggested that HCOsecretion compensated for reduced Cl secretion inNKCC1/ airway epithelia. The absence of spontaneous airway diseaseor pathology in airways from the NKCC1/ mice suggests that theNKCC1 mutant mice are able to compensate adequately for absence of theNKCC1 protein.

  相似文献   
536.
Leukotrienes (LT) are potent lipid mediators synthesized by the 5-lipoxygenase pathway of arachidonic acid (AA) metabolism. LT have been implicated in a broad spectrum of inflammatory processes. To investigate the influence of genetic factors on the contribution of LT to acute inflammation, we generated congenic 5-lipoxygenase-deficient 129, C57BL/6 (B6), and DBA/1Lac (DBA) mouse lines. Topical application of AA evoked a vigorous inflammatory response in 129 and DBA mice, whereas only a modest response was seen in B6 animals. The response to AA in 129 and DBA strains is LT dependent. In contrast, LT make little contribution to this response in B6 mice. AA-induced inflammation in B6 mice is prostanoid dependent, since this response was substantially reduced by treating B6 mice with a cyclooxygenase inhibitor. These data suggest that prostanoids are essential for AA-induced cutaneous inflammation in B6 mice, whereas LT are the major mediators of this response in 129 and DBA strains. In contrast, the response to AA in the peritoneal cavity is robust in the 129 and B6 strains, but was significantly blunted in DBA mice, showing that strain differences in the response to AA are tissue specific. Variations in these and other experimental models of inflammation appear to correlate directly with the ability of a particular mouse strain and a specific tissue to respond to LT, specifically LTC4. Taken together, these findings indicate that the relative contribution of prostanoids and LT to inflammatory responses is variable not only between strains but also between different tissues within these inbred mouse lines.  相似文献   
537.
The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) located on the basolateral membrane of intestinal epithelia has been postulated to be the major basolateral Cl(-) entry pathway. With targeted mutagenesis, mice deficient in the NKCC1 protein were generated. The basal short-circuit current did not differ between normal and NKCC1 -/- jejuna. In the -/- jejuna, the forskolin response (22 microA/cm(2); bumetanide insensitive) was significantly attenuated compared with the bumetanide-sensitive response (52 microA/cm(2)) in normal tissue. Ion-replacement studies demonstrated that the forskolin response in the NKCC1 -/- jejuna was HCO(3)(-) dependent, whereas in the normal jejuna it was independent of the HCO(3)(-) concentration in the buffer. NKCC1 -/- ceca exhibited a forskolin response that did not differ significantly from that of normal ceca, but unlike that of normal ceca, was bumetanide insensitive. Ion-substitution studies suggested that basolateral HCO(3)(-) as well as Cl(-) entry (via non-NKCC1) paths played a role in the NKCC1 -/- secretory response. In contrast to cystic fibrosis mice, which lack both basal and stimulated Cl(-) secretion and exhibit severe intestinal pathology, the absence of intestinal pathology in NKCC1 -/- mice likely reflects the ability of the intestine to secrete HCO(3)(-) and Cl(-) by basolateral entry mechanisms independent of NKCC1.  相似文献   
538.
Zámocký M  Janecek S  Koller F 《Gene》2000,256(1-2):169-182
Catalase-peroxidases belong to Class I of the plant, fungal, bacterial peroxidase superfamily, together with yeast cytochrome c peroxidase and ascorbate peroxidases. Obviously these bifunctional enzymes arose via gene duplication of an ancestral hydroperoxidase. A 230-residues long homologous region exists in all eukaryotic members of Class I, which is present twice in both prokaryotic and archaeal catalase-peroxidases. The overall structure of eukaryotic Class I peroxidases may be retained in both halves of catalase-peroxidases, with major insertions in several loops, some of which may participate in inter-domain or inter-subunit interactions.Interspecies distances in unrooted phylogenetic trees, analysis of sequence similarities in distinct structural regions, as well as hydrophobic cluster analysis (HCA) suggest that one single tandem duplication had already occurred in the common ancestor prior to the segregation of the archaeal and eubacterial lines. The C-terminal halves of extant catalase-peroxidases clearly did not accumulate random changes, so prolonged periods of independent evolution of the duplicates can be ruled out. Fusion of both copies must have occurred still very early or even in the course of the duplication. We suggest that the sparse representatives of eukaryotic catalase-peroxidases go back to lateral gene transfer, and that, except for several fungi, only single copy hydroperoxidases occur in the eukaryotic lineage.The N-terminal halves of catalase-peroxidases, which reveal higher homology with the single-copy members of the superfamily, obviously are catalytically active, whereas the C-terminal halves of the bifunctional enzymes presumably control the access to the haem pocket and facilitate stable folding. The bifunctional nature of catalase-peroxidases can be ascribed to several unique sequence peculiarities conserved among all N-terminal halves, which most likely will affect the properties of both haem ligands.  相似文献   
539.
Fifty-three species of Selaginella were examined for variations in microsporangium anatomy and microspore dispersal strategies. Five anatomically different kinds of microsporangia were observed, displaying three different strategies for microspore dispersal. Xeric species, including all isophyllous species, have microsporangia that only dry and shrink as they dehisce, resulting in microspores being passively dispersed. Among anisophyllous species from tropical and subtropical habitats some species actively eject their microspores, while others of the series Articulatae eject the entire microsporangium. These two types of active ejection both utilize a mechanism similar to that found in fern leptosporangia.  相似文献   
540.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号