首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   20篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   10篇
  2013年   14篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   3篇
  2008年   12篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1996年   1篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1948年   1篇
  1936年   1篇
  1902年   1篇
  1901年   1篇
  1900年   1篇
  1892年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
71.
The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.Many plant species emit isoprene (2-methyl-1,3-butadiene [C5H8]) into the atmosphere at high rates (Sharkey and Yeh, 2001). With an estimated emission rate of 500 to 750 teragram per year by terrestrial ecosystems (Guenther et al., 2006), isoprene exerts a strong control over the oxidizing capacity of the atmosphere. Due to its high reactivity to oxidants, it fuels an array of atmospheric chemical and physical processes affecting air quality and climate, including the production of ground-level ozone in environments with elevated concentrations of nitrogen oxides (Atkinson and Arey, 2003; Pacifico et al., 2009) and the formation/growth of organic aerosols (Nguyen et al., 2011). At the plant level, isoprene provides protection from stress, through stabilizing membrane processes (Sharkey and Singsaas, 1995; Velikova et al., 2011) and/or reducing the accumulation of damaging reactive oxygen species in plant tissues under stress (Loreto et al., 2001; Vickers et al., 2009b; Velikova et al., 2012). While the mechanism(s) are still under investigation, isoprene may directly or indirectly stabilize hydrophobic interactions in membranes (Singsaas et al., 1997), minimize lipid peroxidation (Loreto and Velikova, 2001), and directly react with reactive oxygen species (Kameel et al., 2014), yielding first-order oxidation products methyl vinyl ketone and methacrolein (Jardine et al., 2012, 2013). The two main environmental drivers for global changes in isoprene fluxes are light and temperature (Guenther et al., 2006). Isoprene production is closely linked to net photosynthesis, and both isoprene emissions and net photosynthesis are controlled by light intensity (Monson and Fall, 1989). There is also a positive correlation between net photosynthesis and isoprene emissions as leaf temperatures increase up to the optimum temperature for net photosynthesis (Monson et al., 1992).Despite the close correlation between photosynthesis and isoprene emissions, plant enclosure observations and leaf-level analyses have both shown that the fraction of net photosynthesis dedicated to isoprene emissions is not constant. During stress events that decrease net photosynthetic rates, isoprene emissions are often less affected or even stimulated; this results in an increase in relative isoprene production from 1% to 2% of net photosynthesis under normal conditions to 15% to 50% under extreme stress (Goldstein et al., 1998; Fuentes et al., 1999; Kesselmeier et al., 2002; Harley et al., 2004). In severe stress conditions such as drought, isoprene emissions can even continue in the complete absence of photosynthesis (Fortunati et al., 2008). An uncoupling of isoprene emissions from net photosynthesis has also been observed in a number of other studies where the optimum temperature for isoprene emissions was found to be substantially higher than that of net photosynthesis; under the high-temperature conditions, isoprene emissions can account for more than 50% of net photosynthesis (Sharkey and Loreto, 1993; Lerdau and Keller, 1997; Harley et al., 2004; Magel et al., 2006).Analyses of carbon sources using 13CO2 leaf labeling have revealed that under standard conditions (i.e. leaf temperature of 30°C and photosynthetically active radiation [PAR] levels of 1,000 µmol m–2 s–1), isoprene is produced primarily (70%–90%) using carbon directly derived from the Calvin cycle (Delwiche and Sharkey, 1993; Affek and Yakir, 2002; Karl et al., 2002) via the chloroplastic methylerythritol phosphate (MEP) isoprenoid pathway (Zeidler et al., 1997). The relative contributions of photosynthetic and alternate carbon sources for isoprene are now recognized as being variable under different environmental conditions. Changes in net photosynthesis rates under drought stress (Funk et al., 2004; Brilli et al., 2007), salt stress (Loreto and Delfine, 2000), and changes in ambient O2 and CO2 concentrations (Jones and Rasmussen, 1975; Karl et al., 2002; Trowbridge et al., 2012) alter their relative contributions. Under heat stress-induced photosynthetic limitation in Populus deltoides (a temperate species), an increase in the relative contribution of alternate carbon sources was also observed (Funk et al., 2004). However, our current understanding of the responses of isoprene carbon sources to changes in temperature and light levels is poor, and the connection(s) of these responses to changes in leaf primary carbon metabolism (e.g. photosynthesis, photorespiration, and respiration) remains to be determined.Studies over the last decade have shown or suggested that potential alternate carbon sources include refixation of respired CO2 (Loreto et al., 2004), intermediates from the cytosolic mevalonate (MVA) isoprenoid pathway (Flügge and Gao, 2005; Lichtenthaler, 2010), and intermediates from central carbon metabolism, including pyruvate (Jardine et al., 2010), phosphoenolpyruvate (Rosenstiel et al., 2003), and Glc (Schnitzler et al., 2004). Over 40 years ago, it was also proposed that photorespiratory carbon could directly contribute to isoprene production in plants (Jones and Rasmussen, 1975); however, subsequent studies (Monson and Fall, 1989; Hewitt et al., 1990; Karl et al., 2002) have concluded that photorespiration does not contribute to isoprenoid production.In this study, we examined the carbon composition of isoprene emitted from tropical tree species under changes in light and temperature, the two key environmental variables that affect isoprene emissions. Using a novel real-time analytical approach, we were able to observe compensatory changes in carbon source contribution to isoprene during thermal ramping at high temperatures, despite the overall isoprene emissions remaining relatively stable. By conducting leaf temperature curves under variable 13CO2 concentrations and applying [2-13C]Gly leaf labeling, we also reopen the discussion on the role of photorespiration as an alternate source of carbon for isoprenoid formation.  相似文献   
72.
73.

Background

Urinary mercury concentrations are used in research exploring mercury exposure. Some theorists have proposed that autism is caused by mercury toxicity. We set out to test whether mercury concentrations in the urine of children with autism were significantly increased or decreased compared to controls or siblings.

Methods

Blinded cohort analyses were carried out on the urine of 56 children with autism spectrum disorders (ASD) compared to their siblings (n = 42) and a control sample of children without ASD in mainstream (n = 121) and special schools (n = 34).

Results

There were no statistically significant differences in creatinine levels, in uncorrected urinary mercury levels or in levels of mercury corrected for creatinine, whether or not the analysis is controlled for age, gender and amalgam fillings.

Conclusions

This study lends no support for the hypothesis of differences in urinary mercury excretion in children with autism compared to other groups. Some of the results, however, do suggest further research in the area may be warranted to replicate this in a larger group and with clear measurement of potential confounding factors.  相似文献   
74.
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress‐induced accumulation of reactive oxygen species (ROS), but the products of isoprene‐ROS reactions in plants have not been detected. Using pyruvate‐2‐13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biota–chemistry–climate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.  相似文献   
75.
Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage ϕ29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33–35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation.  相似文献   
76.
The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ?29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.  相似文献   
77.
The purpose of this study was to investigate the role of ectoparasites in transmitting Bartonella infections in wild Richardson's ground squirrels (Spermophilus richardsonii). Richardson's ground squirrels were trapped, examined for fleas, and tested for Bartonella bacteremia once monthly, at six sites, from April to September 2004. After the initial trapping session in April, burrows at three sites were treated with deltamethrin insecticide. Richardson's ground squirrels trapped on treated sites were less likely to have fleas and had fewer fleas than squirrels on control sites in all months following treatment. We found no difference in the prevalence of Bartonella infections on control and treated sites in May, immediately following treatment; however, significantly fewer squirrels were infected with Bartonella on treated sites in June and July. We conclude that ectoparasites are a main route of transmission for Bartonella infections in Richardson's ground squirrels.  相似文献   
78.
Land use change has the potential to cause severe ecosystem degradation and drive changes in disease transmission and emergence. Broadscale clearing of native vegetation for agriculture in southwestern Australia has resulted in severe ecosystem degradation, which has been compounded by the subsequent development of large areas of dryland salinity. The mosquito-borne disease, Ross River virus (RRV), has been noted as a potential adverse human health outcome in these salinity affected regions. The association between dryland salinity and RRV disease was therefore tested by undertaking a spatial analysis of disease notification records using standard and Bayesian techniques. To overcome inherent limitations with notification data, serological RRV antibody prevalence was also investigated. Neither method revealed a significant association with dryland salinity, however, the spatial scale imposed limited the sensitivity of both studies. Thus, further multidisciplinary studies are required to overcome these limitations and advance understanding of this ecosystem health issue, particularly using variables that can be investigated on a finer scale.  相似文献   
79.
Flow regimes are fundamental to sustaining ecological characteristics of rivers worldwide, including their associated floodplains. Recent advances in understanding tropical river–floodplain ecosystems suggest that a small set of basic ecological concepts underpins their biophysical characteristics, especially the high levels of productivity, biodiversity and natural resilience. The concepts relate to (1) river-specific flow patterns, (2) processes ‘fuelled’ by a complex of locally generated carbon and nutrients seasonally mixed with carbon and nutrients from floodplains and catchments, (3) seasonal movements of biota facilitated by flood regimes, (4) food webs and overall productivity sustained by hydrological connectivity, (5) fires in the wet/dry tropical floodplains and riparian zones being major consumers of carbon and a key factor in the subsequent redistribution of nutrients, and (6) river–floodplains having inherent resilience to natural variability but only limited resilience to artificial modifications. Understanding these concepts is particularly timely in anticipating the effects of impending development that may affect tropical river–floodplains at the global scale. Australia, a region encompassing some of the last relatively undisturbed tropical riverine landscapes in the world, provides a valuable case study for understanding the productivity, diversity and resilience of tropical river–floodplain systems. However, significant knowledge gaps remain. Despite substantial recent advances in understanding, present knowledge of these highly complex tropical rivers is insufficient to predict many ecological responses to either human-generated or climate-related changes. The major research challenges identified herein (for example, those related to food web structure, nutrient transfers, productivity, connectivity and resilience), if accomplished in the next decade, will offer substantial insights toward assessing and managing ecological changes associated with human alterations to rivers and their catchments.  相似文献   
80.
The molecular weight and degree of sulfation has been obtained for di-, tetra- and hexasaccharide fragments of heparin obtained by enzymatic depolymerization of porcine mucosal heparin. The sodium salt form of the sulfated oligosaccharide is adsorbed onto an immobilized cationic surfactant film which is inserted directly into the mass spectrometer. Analyses are routinely obtained on 25-50 microgram samples in less than an hour. This approach provides rapid confirmatory structural information that is complementary to existing methodologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号