首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11302篇
  免费   712篇
  国内免费   4篇
  12018篇
  2022年   63篇
  2021年   98篇
  2020年   52篇
  2019年   101篇
  2018年   141篇
  2017年   91篇
  2016年   151篇
  2015年   244篇
  2014年   333篇
  2013年   779篇
  2012年   560篇
  2011年   526篇
  2010年   346篇
  2009年   338篇
  2008年   546篇
  2007年   585篇
  2006年   559篇
  2005年   547篇
  2004年   599篇
  2003年   512篇
  2002年   549篇
  2001年   310篇
  2000年   360篇
  1999年   301篇
  1998年   147篇
  1997年   121篇
  1996年   90篇
  1995年   119篇
  1994年   99篇
  1993年   93篇
  1992年   207篇
  1991年   252篇
  1990年   193篇
  1989年   199篇
  1988年   212篇
  1987年   177篇
  1986年   161篇
  1985年   150篇
  1984年   125篇
  1983年   102篇
  1982年   79篇
  1981年   82篇
  1980年   68篇
  1979年   82篇
  1978年   77篇
  1977年   53篇
  1976年   50篇
  1975年   57篇
  1974年   46篇
  1973年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Mg(2+) buffering mechanisms in PC12 cells were demonstrated with particular focus on the role of the Na(+)/Mg(2+) transporter by using a newly developed Mg(2+) indicator, KMG-20, and also a Na(+) indicator, Sodium Green. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), a protonophore, induced a transient increase in the intracellular Mg(2+) concentration ([Mg(2+)](i)). The rate of decrease of [Mg(2+)](i) was slower in a Na(+)-free extracellular medium, suggesting the coupling of Na(+) influx and Mg(2+) efflux. Na(+) influxes were different for normal and imipramine- (a putative inhibitor of the Na(+)/Mg(2+) transporter) containing solutions. FCCP induced a rapid increase in [Na(+)](i) in the normal solution, while the increase was gradual in the imipramine-containing solution. The rate of decrease of [Mg(2+)](i) in the imipramine-containing solution was also slower than that in the normal solution. From these results, we show that the main buffering mechanism for excess Mg(2+) depends on the Na(+)/Mg(2+) transporter in PC12 cells.  相似文献   
992.
Dipeptidyl peptidase IV (DPPIV) is a serine protease, a member of the prolyl oligopeptidase (POP) family, and has been implicated in several diseases. Therefore, the development of DPPIV selective inhibitors, which are able to control the biological function of DPPIV, is important. We determined the crystal structure of human DPPIV at 2.6A resolution. The molecule consists of a unique eight-bladed beta-propeller domain in the N-terminal region and a serine protease domain in the C-terminal region. Also, the large "cave" structure, which is thought to control the access of the substrate, is found on the side of the beta-propeller fold. Comparison of the overall amino acid sequence between human DPPIV and POP shows low homology (12.9%). In this paper, we report the structure of human DPPIV, especially focusing on a unique eight-bladed beta-propeller domain. We also discuss the way for the access of the substrate to this domain.  相似文献   
993.
2-Hydroxyheptanal (2-HH) is one of the reactive aldehyde species generated during the peroxidation of n-6 polyunsaturated fatty acids, such as linoleic and arachidonic acids. Analogous to the Maillard reaction of reducing sugars, 2-HH readily reacts with lysine epsilon-amino groups. In the present study, to define the occurrence of the Maillard reaction-like lysine modification by 2-HH in vivo, we raised a monoclonal antibody directed to a trihydropyridinone (THPO) structure, 1-alkyl-4-butyl-5-pentyl-1,2,6-trihydropyridin-3-one, formed from 2-HH and lysine, and examined the presence of the antigenic structure in the human atherosclerotic aorta. Mice were immunized with the 2-HH-modified keyhole limpet hemocyanin (KLH) as the immunogen. Using a THPO-carrier protein conjugate, we screened the hybridomas and finally obtained a clone that produced the monoclonal antibody 3C8 (mAb3C8). The antibody strongly recognized bovine serum albumin (BSA) treated with 2-HH, but showed no cross-reactivity with BSAs modified with other related aldehydes. By using this antibody, it was revealed that the antigenic structure was indeed present in atherosclerotic lesions of the human aorta.  相似文献   
994.
4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived reactive aldehyde, is a potent inhibitor of sulfhydryl enzymes, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It has been suggested that HNE exerts an inhibitory effect on the enzyme due to the modification of the cysteine residue (Cys-149) at the catalytic site generating the HNE-cysteine Michael addition-type adduct [Uchida, K., and Stadtman, E. R. (1993) J. Biol. Chem. 268, 6388-6393]. In the study presented here, to elucidate the mechanism for the inactivation of GAPDH by HNE, we attempted to identify the modification sites of the enzyme by monitoring the formation of the HNE Michael adducts by mass spectrometric methods. Incubation of GAPDH (1 mg/mL) with 1 mM HNE in 50 mM sodium phosphate buffer (pH 7.4) at 37 degrees C resulted in a time-dependent loss of enzyme activity, which was associated with the covalent binding of HNE to the enzyme. To identify the site of modification of GAPDH by HNE, both the HNE-pretreated and untreated GAPDH were digested with trypsin and V8 protease, and the resulting peptides were subjected to electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS). This technique identified five peptides, which contained the HNE adducts at His-164, Cys-244, Cys-281, His-327, and Lys-331 and revealed that both His-164 and Cys-281 were very rapidly modified at 5 min, followed by Cys-244 at 15 min and His-327 and Lys-331 at 30 min. These observations and the observation that the HNE modification of the catalytic center, Cys-149, was not observed suggest that the HNE inactivation of GAPDH is not due to the modification of the catalytic center but to the selective modification of amino acids primarily located in the surface of the GAPDH molecule.  相似文献   
995.
Yamada T  Komoto J  Takata Y  Ogawa H  Pitot HC  Takusagawa F 《Biochemistry》2003,42(44):12854-12865
SDH (L-serine dehydratase, EC 4.3.1.17) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent dehydration of L-serine to yield pyruvate and ammonia. Liver SDH plays an important role in gluconeogenesis. Formation of pyruvate by SDH is a two-step reaction in which the hydroxyl group of serine is cleaved to produce aminoacrylate, and then the aminoacrylate is deaminated by nonenzymatic hydrolysis to produce pyruvate. The crystal structure of rat liver apo-SDH was determined by single isomorphous replacement at 2.8 A resolution. The holo-SDH crystallized with O-methylserine (OMS) was also determined at 2.6 A resolution by molecular replacement. SDH is composed of two domains, and each domain has a typical alphabeta-open structure. The active site is located in the cleft between the two domains. The holo-SDH contained PLP-OMS aldimine in the active site, indicating that OMS can form the Schiff base linkage with PLP, but the subsequent dehydration did not occur. Apo-SDH forms a dimer by inserting the small domain into the catalytic cleft of the partner subunit so that the active site is closed. Holo-SDH also forms a dimer by making contacts at the back of the clefts so that the dimerization does not close the catalytic cleft. The phosphate group of PLP is surrounded by a characteristic G-rich sequence ((168)GGGGL(172)) and forms hydrogen bonds with the amide groups of those amino acid residues, suggesting that the phosphate group can be protonated. N(1) of PLP participates in a hydrogen bond with Cys303, and similar hydrogen bonds with N(1) participating are seen in other beta-elimination enzymes. These hydrogen bonding schemes indicate that N(1) is not protonated, and thus, the pyridine ring cannot take a quinone-like structure. These characteristics of the bound PLP suggest that SDH catalysis is not facilitated by forming the resonance-stabilized structure of the PLP-Ser aldimine as seen in aminotransferases. A possible catalytic mechanism involves the phosphate group, surrounded by the characteristic sequence, acting as a general acid to donate a proton to the leaving hydroxyl group of serine.  相似文献   
996.
Prostaglandin D(2) (PGD(2)), a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield electrophilic PGs, such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). We have previously shown that 15d-PGJ(2) potently induces apoptosis of SH-SY5Y human neuroblastoma cells via accumulation of the tumor suppressor gene product p53. In the study presented here, we investigated the molecular mechanisms involved in the 15d-PGJ(2)-induced accumulation of p53. It was observed that 15d-PGJ(2) potently induced p53 protein expression but scarcely induced p53 gene expression. In addition, exposure of the cells to 15d-PGJ(2) resulted in an accumulation of ubiquitinated proteins and in a significant inhibition of proteasome activities, suggesting that 15d-PGJ(2) acted on the ubiquitin-proteasome pathway, a regulatory mechanism of p53 turnover. The effects of 15d-PGJ(2) on the protein turnover were attributed to its electrophilic feature, based on the observations that (i) the reduction of the double bond in the cyclopentenone ring of 15d-PGJ(2) virtually abolished the effects on protein turnover, (ii) overexpression of an endogenous redox regulator, thioredoxin 1, significantly retarded the inhibition of proteasome activities and accumulations of p53 and ubiquitinated proteins induced by 15d-PGJ(2), and (iii) treatment of SH-SY5Y cells with biotinylated 15d-PGJ(2) indeed resulted in the formation of a 15d-PGJ(2)-proteasome conjugate. These data suggest that the modulation of proteasome activity may be involved in the mechanism responsible for the accumulation of p53 and subsequent induction of apoptotic cell death induced by 15d-PGJ(2).  相似文献   
997.
998.
Follistatin-related gene (FLRG) was first identified as a target of a chromosomal translocation in a human B-cell leukemia. Because FLRG protein binds to activins and bone morphogenetic proteins, FLRG is postulated to be a regulator of these growth factors. However, physiological aspects of FLRG are unclear. To elucidate the physiology of FLRG, we examined expression of FLRG in reproductive tissues of the rat. FLRG mRNA was abundantly expressed in the placenta. FLRG mRNA was also expressed in the ovary, uterus, testis, lung, adrenal gland, pituitary, kidney, small intestine, and heart. During the second half of pregnancy, expression of FLRG in the placenta continuously increased, whereas follistatin mRNA levels decreased from Day 12 to Day 14 and remained low thereafter. FLRG was also expressed in decidua. Levels of decidual FLRG mRNA remained low from Day 12 to Day 16 and then noticeably increased until Day 20. In contrast, follistatin mRNA was highly expressed in the decidua on Day 12, continuously decreased until Day 16, and then remained at relatively low levels thereafter. During the rat estrous cycle, levels of ovarian FLRG mRNA fluctuated diurnally, with highest levels during daytime, and did not change relative to the day of the estrous cycle. The present results suggest that FLRG may play a role in the regulation of reproductive events.  相似文献   
999.
The release of cytochrome c from mitochondria, which is regulated by Bcl-2 family members and is considered to take place through voltage-dependent anion channels (VDACs) on the outer membranes of mitochondria, results in activation of effector caspases, such as caspase-3, which induce apoptosis. We studied the involvement of the mitochondrial apoptosis pathway in uterine epithelial apoptosis. Estradiol-17beta pellets were implanted into ovariectomized mice and removed 4 days later (Day 0). The apoptotic index (percentage of apoptotic cells) of the luminal epithelium increased markedly, peaking on Day 2, whereas that of the glandular epithelium increased much less. Expression of VDAC1, 2, and 3 mRNAs increased in the luminal epithelium in correlation with the apoptotic index of the luminal epithelium. No increases in VDAC1, 2, and 3 mRNA levels were observed in the stroma or muscle, where no apoptosis occurs. VDAC1 protein levels in the uterus also correlated well with the apoptotic index of the luminal epithelium. In addition, the apoptotic index showed good correlation with the release of cytochrome c from mitochondria, activation of caspase-3, which was immunohistochemically detected only in the epithelium, and the mRNA and protein ratios of Bax:Bcl-2 and Bax:Bcl-X in the uterus. The present results suggest that the release of cytochrome c from mitochondria, which is regulated by Bcl-2 family members, plays a role in uterine epithelial apoptosis after estrogen deprivation. The increase in VDAC expression may facilitate the release of cytochrome c during apoptosis.  相似文献   
1000.
To observe the formation process of compound I in horseradish peroxidase (HRP), we developed a new freeze-quench device with approximately 200 micro s of the mixing-to-freezing time interval and observed the reaction between HRP and hydrogen peroxide (H(2)O(2)). The developed device consists of a submillisecond solution mixer and rotating copper or silver plates cooled at 77 K; it freezes the small droplets of mixed solution on the surface of the rotating plates. The ultraviolet-visible spectra of the sample quenched at approximately 1 ms after the mixing of HRP and H(2)O(2) suggest the formation of compound I. The electron paramagnetic resonance spectra of the same reaction quenched at approximately 200 micro s show a convex peak at g = 2.00, which is identified as compound I due to its microwave power and temperature dependencies. The absence of ferric signals in the electron paramagnetic resonance spectra of the quenched sample indicates that compound I is formed within approximately 200 micro s after mixing HRP and H(2)O(2). We conclude that the activation of H(2)O(2) in HRP at ambient temperature completes within approximately 200 micro s. The developed device can be generally applied to investigate the electronic structures of short-lived intermediates of metalloenzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号