首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5089篇
  免费   223篇
  国内免费   3篇
  2022年   32篇
  2021年   53篇
  2020年   27篇
  2019年   53篇
  2018年   79篇
  2017年   57篇
  2016年   95篇
  2015年   129篇
  2014年   186篇
  2013年   333篇
  2012年   334篇
  2011年   296篇
  2010年   216篇
  2009年   200篇
  2008年   315篇
  2007年   314篇
  2006年   322篇
  2005年   285篇
  2004年   335篇
  2003年   312篇
  2002年   292篇
  2001年   75篇
  2000年   72篇
  1999年   58篇
  1998年   66篇
  1997年   53篇
  1996年   50篇
  1995年   44篇
  1994年   41篇
  1993年   42篇
  1992年   54篇
  1991年   51篇
  1990年   42篇
  1989年   50篇
  1988年   45篇
  1987年   23篇
  1986年   39篇
  1985年   30篇
  1984年   27篇
  1983年   27篇
  1982年   24篇
  1981年   16篇
  1980年   17篇
  1979年   12篇
  1978年   8篇
  1977年   6篇
  1976年   14篇
  1975年   19篇
  1974年   12篇
  1973年   8篇
排序方式: 共有5315条查询结果,搜索用时 109 毫秒
991.
To gain insight into the significance of nuclear ubiquitinated proteins, two serial extracts prepared from various leukemic cells were analysed by western blotting with anti-ubiquitin antibody. Two previously unidentified ubiquitinated proteins with molecular masses of 10 and 17 kDa were found in 8 M urea-soluble extracts, obtained from Tris-buffer-insoluble materials, of acute myeloid leukemia OCI/AML 1a cells and the cells from the leukemia patients. Both proteins were successfully purified from the OCI/AML 1a cells and identified as monoubiquitin-truncated H2A conjugates, the 10 kDa ubiquitinated H2A(115-129) and the 17 kDa ubiquitinated H2A(54-129), suggesting that both proteins were produced by limited proteolysis of an intact form (23 kDa) of ubiquitinated H2A(1-129). The 17 kDa protein as well as the 23 kDa ubiquitinated histone H2A were localised in chromatin fractions of the OCI/AML cells and released by high concentrations of salt in a micrococcal nuclease-sensitive manner, suggesting their association with chromatin. In contrast, the 10 kDa protein remained insoluble even when the nuclei were treated with nuclease under high salt concentrations, presumably due to binding to the nuclear matrix. An antibody recognising H2A(70-81) also detected the 17 kDa protein in anti-ubiquitin immunoprecipitates obtained from the OCI/AML cell nuclei. In addition, the 17 kDa protein levels in THP-1 cells were transiently increased, concomitant with a decrease in the 23 kDa ubiquitinated H2A, by treatment with phorbol 12-myristate 13-acetate or all-trans-retinoic acid, both of which induce differentiation. This is the first report of probable proteolytic products of ubiquitinated H2A, which might have a role in nuclear functions.  相似文献   
992.
A kinetic investigation of ostrich thrombin specificity, its regulation and evolutionary development in comparison to those of other well-characterised species may contribute to the understanding of the structure-function relationships of thrombin. Antithrombin III (ATIII) was purified from ostrich plasma by heparin-Sepharose and Super Q-650S chromatography. It exhibited a M(r) of 59.2K and a pI in the range of 5.2-6.0. The ostrich N-terminal sequence was compared to those of other known species and showed the highest identity with rabbit ATIII (31%). Inhibition studies included the interaction of ostrich and human ATIII with bovine, human and ostrich thrombin. At a 2:1 molar ratio of ostrich ATIII to enzyme, 20 and 40% remaining activity was found for bovine and ostrich thrombin, respectively. Ostrich thrombin exhibited a pH and temperature optimum of 9.0 and 60 degrees C, respectively. Hydrolysis of seven peptide p-nitroanilide substrates by ostrich thrombin revealed D-Phe-Pip-Arg-pNA (k(cat)/K(m)=9.65 microM(-1)s(-1)) as the substrate with the highest catalytic efficiency. The effect of monovalent cations on ostrich thrombin catalysis revealed enhanced activity with Na(+). The calculated K(i) values for the complex formation between ostrich thrombin and ostrich (9.29 x 10(-11)M) and human (9.66 x 10(-11)M) ATIII are comparable to reported results. The results obtained from the present study confirmed that ostrich thrombin and ATIII are closely related to the corresponding molecules of other species in terms of physicochemical and kinetic properties.  相似文献   
993.
Formation of three germ layers is the most important event in early vertebrate development. Animal cap assays can be used to reproduce the in vivo induction of amphibian tissues in order to investigate the differentiation processes that occur in normal embryonic development. Activin treatment strongly and dose-dependently induces various types of mesodermal and endodermal tissue in cultured animal caps. Beating heart, pronephros, pancreas and cartilage can be induced by microsurgical manipulation and simultaneous treatment with activin and other factors. These in vitro induction systems will be helpful for elucidating the mechanisms of tissue induction and organ formation in vertebrate development.  相似文献   
994.
BACKGROUND: Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS: The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the activation of Mad2- and Bub1-dependent checkpoint, possibly due to a diminished microtubule-kinetochore interaction. Bub1, a checkpoint kinase, localizes briefly at early mitotic kinetochores in wild-type, whereas the cohesion mutation greatly increases the duration of kinetochore localization. Bub1 is bound to the central centromere region of mitotic cells. These cohesion mutants are hypersensitive to a tubulin poison and are synthetic lethal with dis1 and bir1/cut17, which are defective in microtubule-kinetochore interaction. The formation of specialized centromere chromatin containing CENP-A does not require cohesion. Dominant-negative noncleavable Rad21 fails to activate checkpoint but blocks sister chromatid separation and full spindle elongation in anaphase. CONCLUSIONS: Mis4 and Rad21 (budding yeast Scc2 and Scc1 homologs, respectively) act in establishing the normal spindle-kinetochore interaction in early mitosis and inhibit sister chromatid separation until the cleavage of Rad21 in anaphase. Checkpoint directly or indirectly monitors the states of cohesion in early mitosis. Full spindle extension occurs with unequal nuclear division in cohesion mutants in the absence of Mad2.  相似文献   
995.
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.  相似文献   
996.
We have previously reported that resistance exercise improved the iron status in iron-deficient rats. The current study investigated the mechanisms underlying this exercise-related effect. Male 4-week-old rats were divided into a group sacrificed at the start (week 0) (n?=?7), a group maintained sedentary for 6 weeks (S) or a group that performed exercise for 6 weeks (E), and all rats in the latter groups were fed an iron-deficient diet (12 mg iron/kg) for 6 weeks. The rats in the E group performed climbing exercise (5 min?×?6 sets/day, 3 days/week). Compared to the week 0 rats, the rats in the S and E groups showed lower tissue iron content, and the hematocrit, hemoglobin, plasma iron, and transferrin saturation values were all low. However, the tissue iron content and blood iron status parameters, and the whole body iron content measured using the whole body homogenates of the rats, did not differ between the S group and the E group. The messenger RNA (mRNA) expression levels of hepcidin, duodenal cytochrome b, divalent metal transporter 1, and ferroportin 1 did not differ between the S group and the E group. The apparent absorption of iron was significantly lower in the E group than in the S group. Therefore, it was concluded that resistance exercise decreases iron absorption, whereas the whole body iron content is not affected, and an increase in iron recycling in the body seems to be responsible for this effect.  相似文献   
997.
Molecular interactions of the three plastoquinone electron acceptors, QA, QB, and QC, in photosystem II (PSII) were studied by fragment molecular orbital (FMO) calculations. Calculations at the FMO-MP2/6-31G level using PSII models deduced from the X-ray structure of the PSII complexes from Thermosynechococcus elongatus provided the binding energies of QA, QB, and QC as ?56.1, ?37.9, and ?30.1 kcal/mol, respectively. The interaction energies with surrounding fragments showed that the contributions of lipids and cofactors were 0, 24 and 45 % of the total interaction energies for QA, QB, and QC, respectively. These results are consistent with the fact that QA is strongly bound to the PSII protein, whereas QB functions as a substrate and is exchangeable with other quinones and herbicides, and the presence of QC is highly dependent on PSII preparations. It was further shown that the isoprenoid tail is more responsible for the binding than the head group in all the three quinones, and that dispersion forces rather than electrostatic interactions mainly contribute to the stabilization. The relevance of the stability and molecular interactions of QA, QB, and QC to their physiological functions is discussed.  相似文献   
998.
Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to d-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2′-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.  相似文献   
999.
1000.
Coarse woody debris (CWD) is an important component of the forest carbon cycle, acting as a carbon pool and a source of CO2 in temperate forest ecosystems. We used a soda-lime closed-chamber method to measure CO2 efflux from downed CWD (diameter ≥5 cm) and to examine CWD respiration (R CWD) under field conditions over 1 year in a temperate secondary pioneer forest in Takayama forest. We also investigated tree mortality (input to the CWD pool) from the data obtained from the annual tree census, which commenced in 2000. We developed an exponential function of temperature to predict R CWD in each decay class (R 2 = 0.81–0.97). The sensitivity of R CWD to changing temperature, expressed as Q 10, ranged from 2.12 to 2.92 and was relatively high in decay class III. Annual C flux from CWD (F CWD) was extrapolated using continuous air temperature measurements and CWD necromass pools in the three decay classes. F CWD was 3.0 (class I), 17.8 (class II), and 13.7 g C m?2 year?1 (class III) and totaled 34 g C m?2 year?1 in 2009. Annual input to CWD averaged 77 g C m?2 year?1 from 2000 to 2009. The budget of the CWD pool in the Takayama forest, including tree mortality inputs and respiratory outputs, was 0.43 Mg C ha?1 year?1 (net C sink) owing to high tree mortality in the mature pioneer forest. The potential CWD sink is important for the carbon cycle in temperate successional forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号