首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5514篇
  免费   253篇
  国内免费   3篇
  5770篇
  2022年   33篇
  2021年   57篇
  2020年   30篇
  2019年   60篇
  2018年   79篇
  2017年   49篇
  2016年   99篇
  2015年   157篇
  2014年   191篇
  2013年   413篇
  2012年   359篇
  2011年   323篇
  2010年   213篇
  2009年   214篇
  2008年   340篇
  2007年   331篇
  2006年   339篇
  2005年   324篇
  2004年   361篇
  2003年   323篇
  2002年   291篇
  2001年   91篇
  2000年   87篇
  1999年   71篇
  1998年   68篇
  1997年   60篇
  1996年   48篇
  1995年   47篇
  1994年   39篇
  1993年   45篇
  1992年   62篇
  1991年   62篇
  1990年   47篇
  1989年   57篇
  1988年   43篇
  1987年   28篇
  1986年   29篇
  1985年   31篇
  1984年   35篇
  1983年   26篇
  1982年   25篇
  1981年   21篇
  1980年   16篇
  1979年   13篇
  1978年   18篇
  1977年   22篇
  1976年   13篇
  1975年   15篇
  1974年   15篇
  1973年   13篇
排序方式: 共有5770条查询结果,搜索用时 37 毫秒
91.
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase–related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell–cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell–cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho–ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42–MRCK pathway and suppression of the Rho–ROCK pathway.  相似文献   
92.
Oxidation of methyl trimethyl glucopyranosides which were obtained by methanolysis of permethylated cellulose, laminarin, and dextran, was performed with dimethyl sulfoxide (DMSO)-phosphorus pentoxide to afford the corresponding ulose derivatives, methyl 2,3,6-tri-O-methyl-d-xylo-hexopyranosid-4-ulose, methyl 2,4,6-tri-O-methyl-d-ribo-hexopyranosid-3-ulose, and methyl 2,3,4-tri-O-methyl-d-gluco-hexodialdo-l,5-pyranoside, respectively, in good or moderate yields. As a new type of derivatives for the linkage analysis of polysaccharides the chromatographic and spectrometric properties of 2,4-dinitrophenylhydrazone of the ulose derivatives were investigated.  相似文献   
93.
94.
The present study investigated regulation of histone acetylation by L-type voltage-dependent calcium channels (VDCCs), one of the machineries to provide Ca(2+) signals. Acetylation of histone through the phosphorylation of protein kinase Cγ (PKCγ) in the development of methamphetamine (METH)-induced place preference was demonstrated in the limbic forebrain predominantly but also in the nucleus accumbens of α1C subunit knockout mice. Chronic administration of METH produced a significant place preference in mice, which was dose-dependently inhibited by both chelerythrine (a PKC inhibitor) and nifedipine (an L-type VDCC blocker). Protein levels of acetylated histone H3 and p-PKCγ significantly increased in the limbic forebrain of mice showing METH-induced place preference, and it was also significantly attenuated by pre-treatment with chelerythrine or nifedipine. METH-induced place preference was also significantly attenuated by deletion of half the α1C gene, which is one of the subunits forming Ca(2+) channels. Furthermore, increased acetylation of histone H3 was found in specific gene-promoter regions related to synaptic plasticity, such as Nrxn, Syp, Dlg4, Gria1, Grin2a, Grin2b, Camk2a, Creb, and cyclin-dependent kinase 5, in wild-type mice showing METH-induced place preference, while such enhancement of multiple synaptic plasticity genes was significantly attenuated by a deletion of half the α1C gene. These findings suggest that L-type VDCCs play an important role in the development of METH-induced place preference by facilitating acetylation of histone H3 in association with enhanced expression of synaptic plasticity genes via PKCγ phosphorylation following an increase in the intracellular Ca(2+) concentration.  相似文献   
95.
An early investigation at the Biosphere-2 Laboratory, an artificial ecosystem in the Arizona desert, had shown that the flavonoid content of cacti grown in glass-filtered solar light was lower than of cacti grown in normal solar light. This was attributed to the absence of ultraviolet (UV) radiation, which is required for flavonoid biosynthesis. In this study, two species of Opuntia cacti were grown in solar and UV-depleted light, and their flavonol contents of different tissues were determined by HPLC. O. wilcoxii, previously raised in the absence of UV light, was exposed to normal solar light. The flavonol content of young O. wilcoxii pads was 28-fold higher when grown in solar light as compared to UV-depleted light. The flavonol contents of mature outer tissues were only slightly higher. O. violacea, previously raised in solar light, was also maintained in the same UV-depleted artificial ecosystem. The flavonol content after hydrolysis of outer tissues was similar, whether grown in solar light or UV-depleted light. We attribute these responses to different biosynthetic and metabolic rates of young vs. mature plant tissues; slow-growing mature tissues neither produce nor metabolize compounds as quickly as immature tissues. These findings indicate that artificial ecosystems can influence the production of natural products in cultivated plants.  相似文献   
96.
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.  相似文献   
97.
98.
Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号