首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1816篇
  免费   67篇
  1883篇
  2022年   8篇
  2021年   18篇
  2020年   13篇
  2019年   11篇
  2018年   16篇
  2017年   27篇
  2016年   25篇
  2015年   36篇
  2014年   62篇
  2013年   120篇
  2012年   86篇
  2011年   88篇
  2010年   71篇
  2009年   72篇
  2008年   82篇
  2007年   104篇
  2006年   114篇
  2005年   83篇
  2004年   103篇
  2003年   104篇
  2002年   105篇
  2001年   48篇
  2000年   48篇
  1999年   34篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   20篇
  1994年   26篇
  1993年   20篇
  1992年   25篇
  1991年   20篇
  1990年   21篇
  1989年   19篇
  1988年   26篇
  1987年   14篇
  1986年   24篇
  1985年   24篇
  1984年   13篇
  1983年   12篇
  1982年   9篇
  1981年   5篇
  1980年   10篇
  1979年   7篇
  1976年   8篇
  1975年   8篇
  1974年   8篇
  1971年   3篇
  1968年   3篇
  1962年   2篇
排序方式: 共有1883条查询结果,搜索用时 0 毫秒
991.
The actions of cyclomaltodextrin glucanotransferases (CGTase; EC 2.4.1.19) from alkalophilic Bacillus sp. strain A2-5a (A2-5a CGTase), Bacillus macerans (Bmac CGTase), and Bacillus stearothermophilus (Bste CGTase) on amylose were investigated. All three enzymes produced large cyclic alpha-1,4-glucans (cycloamyloses) at the early stage of the reaction, but these were subsequently converted into smaller cycloamyloses. However, the rates of this conversion differed among the three enzymes. The product specificity of each CGTase in the cyclization reaction was determined by measuring the amount of each cycloamylose from CD6 to CD31 (CDn, a cycloamylose with a degree of polymerization of n). A2-5a CGTase produced 10 times more CD7, while Bmac CGTase produced 34 times more CD6 than other cycloamyloses. Bste CGTase produced 12 and 3 times more CD6 and CD7 than other cycloamyloses, respectively. The substrate specificities of the linearization reactions of CD6, CD7, CD8, and larger cycloamyloses (a mixture of CD22 to CD50) were investigated, and we found that CD7 and CD8 are extremely poor substrates for both hydrolytic and transglycosidic linearization (coupling) reactions while larger cycloamyloses are linearized at a much higher rate. By repeating these cyclization and linearization reactions, the larger cycloamyloses initially produced are converted into smaller cycloamyloses and finally into mainly CD6, CD7, and CD8. These three enzymes also differ in their hydrolytic activities, which seem to accelerate the conversion of larger cycloamyloses into smaller cycloamyloses.  相似文献   
992.
Alpha-Neup5Ac-(2-->6)-D-GalpNAc, the carbohydrate portion of sialyl-Tn epitope of the tumor-associated carbohydrate antigen, was prepared by a whole-cell reaction through the combination of recombinant Escherichia coli strains and Corynebacterium ammoniagenes. Two recombinant E. coli strains overexpressed the CMP-Neup5Ac biosynthetic genes and the alpha-(2-->6)-sialyltransferase gene of Photobacterium damsela. C. ammoniagenes contributed to the production of UTP from orotic acid. Alpha-Neup5Ac-(2-->6)-D-GalpNAc was accumulated at 87 mM (45 g/L) after a 25-h reaction starting from orotic acid, N-acetylneuraminic acid, and 2-acetamide-2-deoxy-D-galactose.  相似文献   
993.
The regulation mechanism for expression of the ethanol inducible esterase gene, est1, was investigated in A. pasteurianus. Deletion analysis of the 5' non coding region of est1 showed that the FNR-binding consensus sequence is important in the induction of est1 by ethanol. Cells grown under oxygen starvation produced esterase-1 in not only the presence but also the absence of ethanol. These results suggest that the induction of est1-expression depends on the oxygen concentration, and the gene may be induced by a FNR-like factor activated by a decrease in the intracellular oxygen concentration.  相似文献   
994.
Phosphatidylcholine (PC) is a major component of membranes not only in eukaryotes, but also in several bacteria, including Acetobacter. To identify the PC biosynthetic pathway and its role in Acetobacter sp., we have studied Acetobacter aceti IFO3283, which is characterized by high ethanol oxidizing ability and high resistance to acetic acid. The pmt gene of A. aceti, encoding phosphatidylethanolamine N-methyltransferase (Pmt), which catalyzes methylation of phosphatidylethanolamine (PE) to PC, has been cloned and sequenced. One recombinant plasmid that complemented the PC biosynthesis was isolated from a gene library of the genomic DNA of A. aceti. The pmt gene encodes a polypeptide with molecular mass of either 25125, 26216, or 29052 for an about 27-kDa protein. The sequence of this gene showed significant similarity (44.3% identity in the similar sequence region) with the Rhodobacter sphaeroides pmtA gene which is involved in PE N-methylation. When the pmt gene was expressed in E. coli, which lacks PC, the Pmt activity and PC formation were clearly demonstrated. A. aceti strain harboring an interrupted pmt allele, pmt::Km, was constructed. The pmt disruption was confirmed by loss of Pmt and PC, and by Southern blot analyses. The null pmt mutant contained no PC, but tenfold more PE and twofold more phosphatidylglycerol (PG). The pmt disruptant did not show any dramatic effects on growth in basal medium supplemented with ethanol, but the disruption caused slow growth in basal medium supplemented with acetate. These results suggest that the lack of PC in the A. aceti membrane may be compensated by the increases of PE and PG by an unknown mechanism, and PC in A. aceti membrane is related to its acetic acid tolerance.  相似文献   
995.
996.
Maeda I  Ohta T  Koizumi H  Fukuda M 《FEBS letters》2001,494(3):181-185
Overexpression of cyclin D1 has been implicated in a variety of tumors, such as breast cancers, gastrointestinal cancers and lymphomas. Both gene amplification and protein degradation mediated by ubiquitin (Ub)-dependent proteolysis regulate the abundance of cyclin D1. Here we report that ROC1 interacted with all three D type cyclins in vivo but did not bind to other cyclins tested. The ROC1-CUL1 and ROC1-CUL3, but not ROC1-CUL2, -CUL3 and -CUL4, immunocomplexes promoted polyubiquitination of bacterially purified cyclin D1 in vitro. RING finger mutations of ROC1 eliminated the Ub ligase activity toward cyclin D1. In all cases the ubiquitination of cyclin D1 was accompanied by autoubiquitination of the cullins. The results suggest the involvement of ROC1-cullin ligases in cyclin D1 ubiquitination and a potential mechanism whereby the cullin subunit is ubiquitinated itself while ubiquitinating a substrate.  相似文献   
997.
Graded or "quantal" Ca(2+) release from intracellular stores has been observed in various cell types following activation of either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (InsP(3)R). The mechanism causing the release of Ca(2+) stores in direct proportion to the strength of stimulation is unresolved. We investigated the properties of quantal Ca(2+) release evoked by activation of RyR in PC12 cells, and in particular whether the sensitivity of RyR to the agonist caffeine was altered by lumenal Ca(2+). Quantal Ca(2+) release was observed in cells stimulated with 1 to 40 mM caffeine, a range of caffeine concentrations giving a >10-fold change in lumenal Ca(2+) content. The Ca(2+) load of the caffeine-sensitive stores was modulated by allowing them to refill for varying times after complete discharge with maximal caffeine, or by depolarizing the cells with K(+) to enhance their normal steady-state loading. The threshold for RyR activation was sensitized approximately 10-fold as the Ca(2+) load increased from a minimal to a maximal loading. In addition, the fraction of Ca(2+) released by low caffeine concentrations increased. Our data suggest that RyR are sensitive to lumenal Ca(2+) over the full range of Ca(2+) loads that can be achieved in an intact PC12 cell, and that changes in RyR sensitivity may be responsible for the termination of Ca(2+) release underlying the quantal effect.  相似文献   
998.
A series of short-chain analogues of N-palmitoylsphingosine-1-phosphate, modified by replacement of the phosphate and the long alkenyl side chain with hydrolytically stable difluoromethylene phosphonate and phenyl, respectively, were prepared to study the structure-activity relationship for inhibition of sphingomyelinase. The study revealed that inhibition is highly dependent upon the stereochemistry of the asymmetric centers of the acylamino moiety, and resulted in identification of a non-competitive inhibitor with the same level of inhibitory activity of schyphostatin, the most potent of the few known small molecular inhibitors of sphingomyelinase.  相似文献   
999.
Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-beta1-induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-beta1-induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-beta1 in the regulation of EMT in health and disease.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号