首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1844篇
  免费   92篇
  1936篇
  2022年   16篇
  2021年   27篇
  2020年   12篇
  2019年   17篇
  2018年   18篇
  2017年   24篇
  2016年   31篇
  2015年   55篇
  2014年   72篇
  2013年   74篇
  2012年   98篇
  2011年   133篇
  2010年   74篇
  2009年   65篇
  2008年   137篇
  2007年   111篇
  2006年   97篇
  2005年   101篇
  2004年   91篇
  2003年   107篇
  2002年   91篇
  2001年   33篇
  2000年   30篇
  1999年   37篇
  1998年   28篇
  1997年   10篇
  1996年   18篇
  1995年   20篇
  1994年   10篇
  1993年   18篇
  1992年   24篇
  1991年   22篇
  1990年   18篇
  1989年   22篇
  1988年   16篇
  1987年   15篇
  1986年   22篇
  1985年   16篇
  1984年   13篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1978年   7篇
  1976年   6篇
  1975年   9篇
  1974年   7篇
  1973年   11篇
  1972年   8篇
  1971年   7篇
排序方式: 共有1936条查询结果,搜索用时 15 毫秒
71.
Modified fungal product 4-O-methylascochlorin (MAC) is an experimental agent affecting lipid and carbohydrate metabolism in mammals. The hypocholesterolemic properties of MAC were studied using rats fed on a standard laboratory diet. Because of the insolubility in water, reproducibility of the hypocholesterolemic activity had usually been poor for rats fed ad libitum. The difficulty was overcome by controlled reverse-phase feeding; MAC significantly lowered serum total cholesterol (s-TC) in rats only when given by gastric intubation soon after diet intake.

MAC increased fecal excretion of neutral and acidic sterols and also increased biliary flow accompanying increments in biliary cholesterol, bile acids and phospholipids. A much larger increase in neutral sterols was characteristic for MAC. However, intestinal absorption of cholesterol and cholic acid was unaffected by MAC. Three mechanisms therefore seemed to be working in hypocholesterolemic activity: (a) withdrawal of hepatic cholesterol into bile, (b) a larger fecal loss of sterols following increment of biliary sterols and (c) enhanced bile acid synthesis compensating the larger fecal loss. A negative sterol balance often leads to an increase in hepatic cholesterogenesis. However, cholesterogenesis, as judged from incorporation of the precursors, was unchanged by MAC.  相似文献   
72.
The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.  相似文献   
73.
The products of several Bacillus strains were investigated on rabbit serum calcium decreasing, oxytocic and toad heart function promoting activities. These products were obtained from the clear supernatant fluid of the culture medium after the cells were removed by centrifugation.

For the production of rabbit serum calcium decreasing substance, Bacillus subtilis K and Bacillus natto No. 8 were found to be usefull, Bacillus megaterium KM, Bacillus cereus var. mycoides and Bacillus subtilis K produced oxytocic principle. Bacillus subtilis K, Bacillus brevis and Bacillus megaterium KM also produced toad heart function promoting factor.

A procedure was developed to obtain the electrophoretically homogenous rabbit serum calcium decreasing substance from culture filtrate of Bacillus subtilis K. The crude substance was obtained as isoelectric precipitate by adjusting the culture filtrate to pH 3.0. The crude substance was purified by gel filtration on a Sephadex G-75 column, isoelectric fractionation and chromatography on DEAE-cellulose column. The purified preparation was shown to be homogenous by Tiselius electrophoresis but was separated into two bands by polyacrylamide electrophoresis. The chemical analysis of this biologically active substance indicated this substance to be a lipoprotein. The substance decreased rabbit serum calcium level about 12% at 6~8hr after intravenous injection (dose; 0.5 mg/kg body weight).  相似文献   
74.
75.
Beckwith-Wiedemann syndrome (BWS) is an imprinting-related human disease that is characterized by macrosomia, macroglossia, abdominal wall defects, and variable minor features. BWS is caused by several genetic/epigenetic alterations, such as loss of methylation at KvDMR1, gain of methylation at H19-DMR, paternal uniparental disomy of chromosome 11, CDKN1C mutations, and structural abnormalities of chromosome 11. CDKN1C is an imprinted gene with maternal preferential expression, encoding for a cyclin-dependent kinase (CDK) inhibitor. Mutations in CDKN1C are found in 40 % of familial BWS cases with dominant maternal transmission and in ~5 % of sporadic cases. In this study, we searched for CDKN1C mutations in 37 BWS cases that had no evidence for other alterations. We found five mutations—four novel and one known—from a total of six patients. Four were maternally inherited and one was a de novo mutation. Two frame-shift mutations and one nonsense mutation abolished the QT domain, containing a PCNA-binding domain and a nuclear localization signal. Two missense mutations occurred in the CDK inhibitory domain, diminishing its inhibitory function. The above-mentioned mutations were predicted by in silico analysis to lead to loss of function; therefore, we strongly suspect that such anomalies are causative in the etiology of BWS.  相似文献   
76.
We have previously isolated a lactic acid bacterium (LAB), Pediococcus pentosaceus LP28, from the longan fruit Euphoria longana. Since the plant-derived LAB strain produces an extracellular polysaccharide (EPS), in this study, we analyzed the chemical structure and the biosynthesizing genes for the EPS.The EPS, which was purified from the LP28 culture broth, was classified into acidic and neutral EPSs with a molecular mass of about 50 kDa and 40 kDa, respectively. The acidic EPS consisted of glucose, galactose, mannose, and N-acetylglucosamine moieties. Interestingly, since pyruvate residue was detected in the hydrolyzed acidic EPS, one of the four sugars may be modified with pyruvate. On the other hand, the neutral EPS consisted of glucose, mannose, and N-acetylglucosamine; pyruvate was scarcely detected in the polysaccharide molecule.As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we determined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular DNA, which is composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%. We also found that the LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative polysaccharide pyruvyltransferase.  相似文献   
77.
78.
79.
In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.  相似文献   
80.
Bone morphogenetic protein (BMP)-2/4 play critical roles in early embryogenesis and skeletal development. BMP-2/4 signals conduct into cells via two types of serine/threonine kinase receptors, known as BMPR-I (IA and IB) and BMPR-II. Here we identified splicing factor 3b subunit 4 (SF3b4) as a molecule that interacts with BMPR-IA, using a yeast two-hybrid screening with a human fetal brain cDNA library. Co-immunoprecipitation/immunoblot analysis confirmed their interaction in mammalian cells. By separation of the cell components, SF3b4 was present in the cell membrane fraction with BMPR-IA as well as in the nucleus. Overexpression of SF3b4 inhibited BMP-2-mediated osteogenic and chondrocytic differentiation of C2C12 and ATDC5 cells, respectively, and the endogenous expression level of SF3b4 decreased during differentiation in ATDC5 cells. By reporter gene assay, SF3b4 suppressed Id reporter gene activity, specific to the Smad1/5/8 pathway, but not TGFbeta-mediated reporter gene activity. Biotin labeling of the cell surface proteins followed by their immunoblot revealed that SF3b4 decreased the cell surface BMPRI-A levels. Further analysis by molecular modeling of the intracellular domain of BMPR-IA, coupled with binding studies of its several mutants, indicated that the site(s) for SF3b4 binding is not directly associated with the C-terminal lobe and the activation segment. Taken together, these results suggest that SF3b4, known to be localized in the nucleus and involved in RNA splicing, binds BMPR-IA and specifically inhibits BMP-mediated osteochondral cell differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号