首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   984篇
  免费   44篇
  2022年   12篇
  2021年   12篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   39篇
  2014年   48篇
  2013年   71篇
  2012年   67篇
  2011年   63篇
  2010年   29篇
  2009年   21篇
  2008年   47篇
  2007年   60篇
  2006年   54篇
  2005年   56篇
  2004年   64篇
  2003年   72篇
  2002年   65篇
  2001年   5篇
  2000年   8篇
  1999年   8篇
  1998年   13篇
  1997年   11篇
  1996年   16篇
  1995年   15篇
  1994年   14篇
  1993年   12篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   12篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   3篇
排序方式: 共有1028条查询结果,搜索用时 15 毫秒
81.
82.
LSD1, a lysine-specific histone demethylase, is overexpressed in several types of cancers and linked to poor outcomes. In breast cancer, the significance of LSD1 overexpression is not clear. We have performed an in silico analysis to assess the relationship of LSD1 expression to clinical outcome. We demonstrate that LSD1 overexpression is a poor prognostic factor in breast cancer, especially in basal-like breast cancer, a subtype of breast cancer with aggressive clinical features. This link is also observed in samples of triple negative breast cancer. Interestingly, we note that overexpression of LSD1 correlates with down-regulation of BRCA1 in triple negative breast cancer. This phenomenon is also observed in in vitro models of basal-like breast cancer, and is associated with an increased sensitivity to PARP inhibitors. We propose therefore that high expression levels of the demethylase LSD1 is a potential prognostic factor of poor outcome in basal-like breast cancer, and that PARP inhibition may be a therapeutic strategy of interest in this poor prognostic subtype with overexpression of LSD1.  相似文献   
83.
IntroductionSeveral cytotoxic anticancer drugs inhibit DNA replication and/or mitosis, while EGFR tyrosine kinase inhibitors inactivate EGFR signalling in cancer cell. Both types of anticancer drugs improve the overall survival of the patients with non-small-cell lung cancer (NSCLC), although tumors often become refractory to this treatment. Despite several mechanisms by which the tumors become resistant having been described the effect of these compounds on anti-tumor immunity remains largely unknown.MethodsThis study examines the effect of the cytotoxic drug Gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on the expression of NK group 2 member D (NKG2D) ligands as well as the sensitivity of NSCLC cells to the NK-mediated lysis.ResultsWe demonstrate that Gemcitabine treatment leads to an enhanced expression, while Gefitinib downregulated the expression of molecules that act as key ligands for the activating receptor NKG2D and promote NK cell-mediated recognition and cytolysis. Gemcitabine activated ATM and ATM- and Rad-3-related protein kinase (ATR) pathways. The Gemcitabine-induced phosphorylation of ATM as well as the upregulation of the NKG2D ligand expression could be blocked by an ATM-ATR inhibitor. In contrast, Gefitinib attenuated NKG2D ligand expression. Silencing EGFR using siRNA or addition of the PI3K inhibitor resulted in downregulation of NKG2D ligands. The observations suggest that the EGFR/PI3K pathway also regulates the expression of NKG2D ligands. Additionally, we showed that both ATM-ATR and EGFR regulate MICA/B via miR20a.ConclusionIn keeping with the effect on NKG2D expression, Gemcitabine enhanced NK cell-mediated cytotoxicity while Gefitinib attenuated NK cell killing in NSCLC cells.  相似文献   
84.

Background

Activated mineralocorticoid receptors influence the association between daily salt intake and blood pressure. A relatively low mineralocorticoid receptor function is reported to be a risk for mental distress such as depression. Since mental distress is also a known risk for hypertension and cardiovascular disease, understanding of the association between estimated daily salt intake and mental distress contributing to hypertension is important for risk estimation for cardiovascular disease. However, no single study has reported this association.

Methods

We conducted a cross-sectional study of 1014 Japanese men undergoing general health check-ups. Mental distress was diagnosed as a Kessler 6 scale score ≥5. We also classified mental distress by levels of hypertension. Estimated daily salt intake was calculated from a causal urine specimen.

Results

Independent from classical cardiovascular risk factors and thyroid disease, we found a significant inverse association between estimated daily salt intake and mental distress. When we analyzed for mental distress and hypertension, we also found a significant association. With the reference group being the lowest tertiles of estimated daily salt intake, the multivariable odds ratios (ORs) of mental distress and mental distress with hypertension for the highest tertiles were 0.50 (0.29–0.88) and 0.46 (0.22–0.96).

Conclusions

Lower estimated daily salt intake is a significant risk of mental distress for rural community-dwelling Japanese men. Since depression is reported to be associated with cardiovascular disease, risk estimation for the lower intake of salt on mental distress, especially for mental distress with hypertension, may become an important tool to prevent cardiovascular disease.  相似文献   
85.
86.

Background

SLURP1 is the causal gene for Mal de Meleda (MDM), an autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis. Moreover, although SLURP1 likely serves as an important proliferation/differentiation factor in keratinocytes, the possible relation between SLURP1 and other skin diseases, such as psoriasis and atopic dermatitis, has not been studied, and the pathophysiological control of SLURP1 expression in keratinocytes is largely unknown.

Objectives

Our aim was to examine the involvement of SLURP1 in the pathophysiology of psoriasis using an imiquimod (IMQ)-induced psoriasis model mice and normal human epidermal keratinocytes (NHEKs).

Results

SLURP1 expression was up-regulated in the skin of IMQ-induced psoriasis model mice. In NHEKs stimulated with the inflammatory cytokines IL-17, IL-22 and TNF-α, which are reportedly expressed in psoriatic lesions, SLURP1 mRNA expression was significantly up-regulated by IL-22 but not the other two cytokines. The stimulatory effect of IL-22 was completely suppressed in NHEKs treated with a STAT3 inhibitor or transfected with siRNA targeting STAT3. Because IL-22 induces production of antimicrobial proteins in epithelial cells, the antibacterial activity of SLURP1 was assessed against Staphylococcus aureus (S. aureus), which is known to be associated with disease severity in psoriasis. SLURP1 significantly suppressed the growth of S. aureus.

Conclusions

These results indicate SLURP1 participates in pathophysiology of psoriasis by regulating keratinocyte proliferation and differentiation, and by suppressing the growth of S. aureus.  相似文献   
87.
Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.  相似文献   
88.
If a social‐living animal has a long life span, permitting different generations to co‐exist within a social group, as is the case in many primate species, it can be beneficial for a parent to continue to support its weaned offspring to increase the latter's survival and/or reproductive success. Chimpanzees have an even longer period of dependence on their mothers' milk than do humans, and consequently, offspring younger than 4.5–5 years old cannot survive if the mother dies. Most direct maternal investments, such as maternal transportation of infants and sharing of night shelters (beds or nests), end with nutritional weaning. Thus, it had been assumed that a mother's death was no longer critical to the survival of weaned offspring, in contrast to human children, who continue to depend on parental care long after weaning. However, in theory at least, maternal investment in a chimpanzee son after weaning could be beneficial because in chimpanzees' male‐philopatric society, mother and son co‐exist for a long time after the offspring's weaning. Using long‐term demographic data for a wild chimpanzee population in the Mahale Mountains, Tanzania, we show the first empirical evidence that orphaned chimpanzee sons die younger than expected even if they lose their mothers after weaning. This suggests that long‐lasting, but indirect, maternal investment in sons continues several years after weaning and is vital to the survival of the sons. The maternal influence on males in the male‐philopatric societies of hominids may be greater than previously believed. Am J Phys Anthropol, 153:139–143, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
89.
90.
The mechanism of increasing effect of CuCl2 on specific [3H]cimetidine binding was examined in brain membranes of rats. CuCl2-Induced elevation of [3H]cimetidine binding was high in Krebs-Ringer solution (pH 7.4) compared to those in 50 mM Na, K-phosphate buffer (pH 7.4) and in 50 mM Tris-HCl buffer (pH 7.4). CaCl2 (5–50 mM) inhibited effect of CuCl2, but NaCl (25–200 mM), KCl (5–100 mM) or MgCl2 (5–50 mM) did not. CuCl2 (50 μM) elevated 9.3- and 2.5-fold the binding in phosphate- and Tris—HCl buffer, respectively. EDTA-2Na decreased the binding elevated by 50 μM CuCl2 in phosphate buffer to the similar level in Tris-HCl buffer, whereas it did not affect those in Tris-HCl buffer. The absorption spectra of cimetidine and CuCl2 mixture showed a peak at 317 nm in phosphate buffer that was not observed in Tris-HCl buffer. It is suggested that cimetidine-Cu2+ chelate complex could be formed in phosphate buffer, resulting in higher amount of binding in phosphate buffer than in Tris-HCl buffer. PdCl2 also caused a marked elevation in [3H]cimetidine binding, seeming to be due to formation of cimetidine-Pd2+ chelate complex. There were two types of [3H]cimetidine binding in the presence of 20 nM PdCl2: high affinity binding with Kd = 0.7 ± 0.1 nM and low affinity binding with Kd = 44.3 ± 3.0 nM. It is suggested that cimetidine-Cu2+ complex binds to cimetidine binding sites in brain with higher affinity than cimetidine alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号