首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   100篇
  2022年   14篇
  2021年   14篇
  2020年   11篇
  2019年   12篇
  2018年   13篇
  2017年   15篇
  2016年   20篇
  2015年   54篇
  2014年   66篇
  2013年   98篇
  2012年   98篇
  2011年   96篇
  2010年   46篇
  2009年   34篇
  2008年   76篇
  2007年   92篇
  2006年   82篇
  2005年   72篇
  2004年   104篇
  2003年   94篇
  2002年   85篇
  2001年   30篇
  2000年   41篇
  1999年   24篇
  1998年   23篇
  1997年   15篇
  1996年   20篇
  1995年   23篇
  1994年   24篇
  1993年   22篇
  1992年   22篇
  1991年   22篇
  1990年   26篇
  1989年   22篇
  1988年   16篇
  1987年   14篇
  1986年   16篇
  1985年   13篇
  1984年   14篇
  1983年   9篇
  1982年   7篇
  1981年   10篇
  1980年   8篇
  1979年   10篇
  1978年   6篇
  1976年   5篇
  1971年   5篇
  1970年   8篇
  1967年   3篇
  1966年   4篇
排序方式: 共有1674条查询结果,搜索用时 31 毫秒
51.
In order to analyze the fluctuation of the poly ADP-ribosylation level during the cell cycle of synchronously growing He La S3 cells, we have developed three different assay systems; intact and disrupted nuclear systems, and poly(ADP-ribose) polymerase in vitro system. The optimum conditions for poly ADP-ribosylation in each assay system were similar except the pH optimum. Under the conditions favoring poly ADP-ribosylation, little radioactivity incorporated into poly(ADP-ribose) was lost after termination of the poly ADP-ribosylation by addition of nicotinamide which inhibits the reactions by more than 90% in any system. In the intact nuclear system, the level of poly ADP-ribosylation increased slightly subsequent to late G2 phase with a peak at M phase. The high level of poly ADP-ribosylation in M phase was also confirmed by using selectively collected mitotic cells which were arrested in M phase by Colcemid. The level in mitotic chromosomes was 5.1-fold higher than that in the nuclei from logarithmically growing cells. Colcemid has no effect on the poly ADP-ribosylation. In the disrupted nuclear system, a relatively high level of poly ADP-ribosylation was observed during mid S-G2 phase. When poly(ADP-ribose) polymerase was extracted from the nuclei with a buffer solution containing 0.3 M KCl, more than 90% of the enzyme activity was recovered. The poly(ADP-ribose) polymerase in vitro system was dependent on both DNA and histone—10 μg each. In the enzyme system, enzyme activity was detected throughout the cell cycle and was observed to be highest in G2 phase. The high level at M phase observed in the intact nuclear system was not seen in the other two systems. Under the assay conditions, little influence of poly(ADP-ribose) degrading enzymes was noted on the level of poly ADP-ribosylation in any of the three systems. This was confirmed at various stages during the cell cycle through pulse-labeling and “chasing” by adding nicotinamide.  相似文献   
52.
A protein which has affinity for single-stranded DNA but not for double-stranded DNA has been isolated from HeLa cells by DNA-cellulose chromatography. This protein having a molecular weight of 34,000 was accounted for approximately 3% of total soluble proteins. Its binding specificity to DNA and nucleotide homopolymers has been investigated by Sephadex G-200 column chromatography. Specific binding to single-stranded DNA has been confirmed also by this method and furthermore strong binding to poly U has been found.  相似文献   
53.
Blood group H-active polysaccharide has been prepared from “smooth” strain Escherichia coli 2B-V by Freeman's method. a-Fucosidase derived from Bacillus fulminans caused the liberation of fucose from this polysaccharide, together with concomitant loss of blood group H activity. The results of quantitative microanalysis, borohydride reduction, the Morgan-Elson reaction and enzymic hydrolysis with β-galactosidase using isolated oligosaccharides obtained by partial acid hydrolysis indicated that the O-specific side chain of the polysaccharide has a pentasaccharide unit which is β-d-Gal-(1→3)-d-GalNAc-(1→3)-d-GalNAc-Fuc with a D -glucose residue bound at some undetermined point on this structure. It was considered that terminal non-reducing fucose of the polysaccharide was liberated by partial acid hydrolysis.  相似文献   
54.
55.
The urate-anion exchanger URAT1 is a member of the organic anion transporter (OAT) family that regulates blood urate level in humans and is targeted by uricosuric and antiuricosuric agents. URAT1 is expressed only in the kidney, where it is thought to participate in tubular urate reabsorption. We found that the multivalent PDZ (PSD-95, Drosophila discs-large protein, Zonula occludens protein 1) domain-containing protein, PDZK1 interacts with URAT1 in a yeast two-hybrid screen. Such an interaction requires the PDZ motif of URAT1 in its extreme intracellular C-terminal region and the first, second, and fourth PDZ domains of PDZK1 as identified by yeast two-hybrid assay, in vitro binding assay and surface plasmon resonance analysis (K(D) = 1.97-514 nM). Coimmunoprecipitation studies revealed that the wild-type URAT1, but not its mutant lacking the PDZ-motif, directly interacts with PDZK1. Colocalization of URAT1 and PDZK1 was observed at the apical membrane of renal proximal tubular cells. The association of URAT1 with PDZK1 enhanced urate transport activities in HEK293 cells (1.4-fold), and the deletion of the URAT1 C-terminal PDZ motif abolished this effect. The augmentation of the transport activity was accompanied by a significant increase in the V(max) of urate transport via URAT1 and was associated with the increased surface expression level of URAT1 protein from HEK293 cells stably expressing URAT1 transfected with PDZK1. Taken together, the present study indicates the novel role of PDZK1 in regulating the functional activity of URAT1-mediated urate transport in the apical membrane of renal proximal tubules.  相似文献   
56.
57.
Inversional switching systems in procaryotes are composed of an invertible DNA segment and a site-specific recombinase gene adjacent to or contained in the segment. Four related but functionally distinct systems have previously been characterized in detail: the Salmonella typhimurium H segment-hin gene (H-hin), phage Mu G-gin, phage P1 C-cin, and Escherichia coli e14 P-pin. In this article we report the isolation and characterization of three new recombinase genes: pinB, pinD, and defective pinF from Shigella boydii, Shigella dysenteriae, and Shigella flexneri, respectively. The genes pinB and pinD were detected by the complementation of a hin mutation of Salmonella and were able to mediate inversion of the H, P, and C segments. pinB mediated H inversion as efficiently as the hin gene did and mediated C inversion with a frequency three orders of magnitude lower than that of the cin gene. pinD mediated inversion of H and P segments with frequencies ten times as high as those for the genes intrinsic to each segment and mediated C inversion with a frequency ten times lower than that for cin. Therefore, the pinB and pinD genes were inferred to be different from each other. The invertible B segment-pinB gene cloned from S. boydii is highly homologous to the G-gin in size, organization, and nucleotide sequence of open reading frames, but the 5' constant region outside the segment is quite different in size and predicted amino acid sequence. The B segment underwent inversion in the presence of hin, pin, or cin. The defective pinF gene is suggested to hae the same origin as P-pin on e14 by the restriction map of the fragment cloned from a Pin+ transductant that was obtained in transduction from S. flexneri to E. coli delta pin.  相似文献   
58.
The effect of phenolic compounds on hydrothermal oxidation of cellulose was studied using a batch reactor at 300 degrees C with H(2)O(2) as oxidant. Intermediate products, as well as the yields of acetic acid produced in the oxidation of cellulose, phenolic compounds, and cellulose-phenolic compound mixtures were examined. Phenolic compounds used were phenol, 1,4-benzenediol, 2-methoxy-4-methylphenol, and 2,6-di-tert-butyl-4-methylphenol. In the case of oxidation of cellulose-phenolic compound mixtures, (1) formic acid, a basic oxidation product from carbohydrates, decreased considerably, (2) 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde, acid-catalyzed dehydration products from carbohydrates, appeared, and (3) the yield of acetic acid increased compared to that in the oxidation of cellulose. From these results, phenolic compounds seem to inhibit the oxidation of cellulose under hydrothermal conditions. The inhibition of the oxidation of cellulose by phenolic compounds seems to be related closer to the stability of phenolic compounds under oxidation conditions rather than the ease to remove phenolic hydrogen on the OH group.  相似文献   
59.
Solaniol, a Toxic Metabolite of Fusarium solani   总被引:1,自引:6,他引:1  
Fusarium solani M-1-1 isolated from moldy bean hulls produces T-2 toxin, diacetoxyscirpenol, and a new toxic trichothecene, solaniol, in Czapek-Dox-peptone medium.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号