首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3322篇
  免费   169篇
  国内免费   1篇
  2022年   14篇
  2021年   35篇
  2020年   19篇
  2019年   26篇
  2018年   46篇
  2017年   39篇
  2016年   72篇
  2015年   110篇
  2014年   105篇
  2013年   394篇
  2012年   211篇
  2011年   219篇
  2010年   130篇
  2009年   135篇
  2008年   231篇
  2007年   221篇
  2006年   243篇
  2005年   194篇
  2004年   181篇
  2003年   197篇
  2002年   185篇
  2001年   29篇
  2000年   22篇
  1999年   26篇
  1998年   40篇
  1997年   36篇
  1996年   34篇
  1995年   39篇
  1994年   26篇
  1993年   24篇
  1992年   11篇
  1991年   19篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1986年   5篇
  1985年   5篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   16篇
  1980年   7篇
  1979年   11篇
  1978年   11篇
  1977年   5篇
  1976年   11篇
  1975年   5篇
  1974年   7篇
  1973年   4篇
  1970年   4篇
排序方式: 共有3492条查询结果,搜索用时 728 毫秒
61.
Proteomic profiles of the lamina of Ecklonia kurome Okamura, one of the Japanese dominant laminarialean kelps, were investigated by two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF. Due to the absence of E. kurome DNA or protein databases, homology-based cross-species protein identification was performed using a combination of three database-searching algorithms, Mascot peptide mass fingerprinting, Mascot MS/MS ion search, and mass spectrometry-based BLAST. Proteins were extracted from the lamina by an ethanol/phenol method and subjected to 2-DE (pI 4–7, 10 % polyacrylamide gel). More than 700 spots were detected in the 2-DE gel with CBB, and 93 spots (24 proteins) were successfully identified by MALDI-TOF/TOF and the cross-species database searching. The identified proteins mainly consisted of cytoplasmic carbohydrate metabolic enzymes, chloroplast proteins involved in photosynthesis, and haloperoxidases. Interestingly, vanadium-dependent bromoperoxidases (vBPO), which is thought to be involved in halogen uptake, synthesis of halogenated products, and detoxification of reactive oxygen species, were separated into at least 23 different spots. By comparing mass spectra, amino acid sequences predicted from tandem mass spectra and haloperoxidase activities of the vBPOs, we found that (1) at least two types of vBPOs were expressed in the lamina of E. kurome and (2) two pro-vBPOs might be activated by specific cleavage at N- and C-terminal regions.  相似文献   
62.
Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p  =  0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients.  相似文献   
63.

Background

Advanced glycation end product (AGE) accumulation is thought to be a measure of cumulative metabolic stress that has been reported to independently predict cardiovascular disease in diabetes and renal failure. The aim of this study was to evaluate the association between AGE accumulation, measured as skin autofluorescence, and the progression of renal disease in pre-dialysis patients with chronic kidney disease (CKD).

Methods

Skin autofluorescence was measured noninvasively with an autofluorescence reader at baseline in 449 pre-dialysis patients with CKD. The primary end point was defined as a doubling of serum creatinine and/or need for dialysis.

Results

Thirty-three patients were lost to follow-up. Forty six patients reached the primary end point during the follow-up period (Median 39 months). Kaplan-Meier analysis showed a significantly higher risk of development of the primary end points in patients with skin autofluorescence levels above the optimal cut-off level of 2.31 arbitrary units, derived by receiver operator curve analysis. Cox regression analysis revealed that skin autofluorescence was an independent predictor of the primary end point, even after adjustment for age, gender, smoking history, diabetes, estimated glomerular filtration rate and proteinuria (adjusted hazard ratio 2.58, P = 0.004).

Conclusions

Tissue accumulation of AGEs, measured as skin autofluorescence, is a strong and independent predictor of progression of CKD. Skin autofluorescence may be useful for risk stratification in this group of patients; further studies should clarify whether AGE accumulation could be one of the therapeutic targets to improve the prognosis of CKD.  相似文献   
64.

Background

Intralymphatic tumors in the extratumoral area are considered to represent the preceding phase of lymph node metastasis. The aim of this study was to clarify the biological properties of intralymphatic tumors susceptible to the development of lymph node metastasis, with special reference to the expression of cancer initiating/stem cell (CIC/CSC) related markers in cancer cells and the number of infiltrating stromal cells.

Material and Methods

Primary lung adenocarcinomas with lymphatic permeation in the extratumoral area were retrospectively examined (n = 107). We examined the expression levels of CIC/CSC related markers including ALDH1, OCT4, NANOG, SOX2 and Caveolin-1 in the intralymphatic cancer cells to evaluate their relationship to lymph node metastasis. Moreover, the number of infiltrating stromal cells expressing CD34, α-smooth muscle actin, and CD204 were also evaluated.

Results

Among the intralymphatic tissues, low ALDH1 expression in cancer cells, high SOX2 expression in cancer cells, and a high number of CD204(+) macrophages were independent predictive factors for lymph node metastasis (P = 0.004, P = 0.008, and P = 0.028, respectively). Among these factors, only low ALDH1 expression in cancer cells was significantly correlated with the farther spreading of lymph node metastasis (mediastinal lymph node, pathological N2) (P = 0.046) and the metastatic lymph node ratio (metastatic/resected) (P = 0.028). On the other hand, in the primary tumors, ALDH1 expression in the cancer cells was not associated with lymph node metastasis. Intralymphatic cancer cells expressing low ALDH1 levels exhibited lower E-cadherin expression levels than cancer cells with high levels of ALDH1 expression (P = 0.015).

Conclusions

Intralymphatic cancer cells expressing low levels of ALDH1 and infiltrating macrophages expressing CD204 have a critical impact on lymph node metastasis. Our study also highlighted the significance of evaluating the biological properties of intralymphatic tumors for tumor metastasis.  相似文献   
65.
Intact maize plants prime for defensive action against herbivory in response to herbivore-induced plant volatiles (HIPVs) emitted from caterpillar-infested conspecific plants. The recent research showed that the primed defense in receiver plants that had been exposed to HIPVs was maintained for at least 5 d after exposure. Herbivory triggered the receiver plants to enhance the expression of a defense gene for trypsin inhibitor (TI). At the upstream sequence of a TI gene, non-methylated cytosine residues were observed in the genome of HIPV-exposed plants more frequently than in that of healthy plant volatile-exposed plants. These findings provide an innovative mechanism for the memory of HIPV-mediated habituation for plant defense. This mechanism and further innovations for priming of defenses via plant communications will contribute to the development of plant volatile-based pest management methods in agriculture and horticulture.  相似文献   
66.
Evolution has shown the co-dependency between host plants and predators (insects), especially inevitable dependency of predators on plant biomass for securing their energy sources. It was postulated that NAD+ source used for major energy producing pathway is the glycerol-3-phosphate shuttle in insects. Using high throughput metabolomics approach, we found that larva of leaf beetle (Gastrophysa atrocyanea), which feed oxalate-rich plants (Rumex obtusifolius), possessed a unique mechanism for accumulating unusually high amounts of lactate. Similarly, larva of butterfly (Papilio machaon) fed with fennel (Foeniculum vulgare) accumulated lactate. Same butterfly also showed the elevated level of glycerol-3-phosphate equivalent to lactate. These evidences provide new insights into the mechanism underlying metabolite alteration between host plants and insect herbivores.  相似文献   
67.
68.

Background

Cardiac troponin is a specific biomarker for cardiomyocyte necrosis in acute coronary syndromes. Troponin release from the coronary circulation remains to be determined because of the lower sensitivity of the conventional assay. We sought to determine basal and angina-induced troponin release using a highly sensitive troponin assay.

Methods and Results

The cardiac troponin T levels in serum sampled from the peripheral vein (PV), the aortic root (AO), and the coronary sinus (CS) were measured in 105 consecutive stable patients with coronary risk factor(s) and suspected coronary artery disease (CAD) and in 33 patients without CAD who underwent an acetylcholine provocation test. At baseline, there was a significant increase in the troponin levels from AO [9.0 (6.4, 13.1) pg/mL for median (25th, 75th percentiles)] to CS [10.3 (7.3, 15.5) pg/mL, p<0.001] in 96 (91.4%) patients and the difference was 1.1 (0.4, 2.1) pg/mL, which reflected basal transcardiac troponin release (TTR). TTR was positively correlated with PV levels (r = 0.22, p = 0.03). Male sex, left ventricular hypertrophy determined by echocardiography, T-wave inversion, and CAD correlated with elevated TTR defined as above: median, 1.1 pg/mL. A significant increase in TTR was noted in 17 patients with coronary spasms [0.6 (0.2, 1.2) pg/mL, p<0.01] but not in 16 patients without spasms [0.0 (−0.5, 0.9) pg/mL, p = 0.73] after the acetylcholine provocation.

Conclusion

Basal TTR in the coronary circulation was observed in most of the patients with suspected CAD and risk factor(s). This sensitive assay detected myocardial ischemia-induced increases in TTR caused by coronary spasms.  相似文献   
69.
The nuclear receptor co-repressor (N-CoR) is a key component of the generic co-repressor complex that plays an important role in the control of cellular growth and differentiation. As shown by us recently, the growth suppressive function of N-CoR largely relies on its capacity to repress Flt3, a key regulator of cellular gorwth during normal and malignant hematopoesis. We further demonstrated how de-repression of Flt3 due to the misfolded conformation dependent loss (MCDL) of N-CoR contributed to malignant growth in acute myeloid leukemia (AML). However, the molecular mechanism underlying the MCDL of N-CoR and its implication in AML pathogenesis is not fully understood. Here, we report that Akt-induced phosphorylation of N-CoR at the consensus Akt motif is crucial for its misfolding and subsequent loss in AML (AML-M5). N-CoR displayed significantly higher level of serine specific phosphorylation in almost all AML-M5 derived cells and was subjected to processing by AML-M5 specific aberrant protease activity. To identify the kinase linked to N-CoR phosphorylation, a library of activated kinases was screened with the extracts of AML cells; leading to the identification of Akt as the putative kinase linked to N-CoR phosphorylation. Consistent with this finding, a constitutively active Akt consistently phosphorylated N-CoR leading to its misfolding; while the therapeutic and genetic ablation of Akt largely abrogated the MCDL of N-CoR in AML-M5 cells. Site directed mutagenic analysis of N-CoR identified serine 1450 as the crucial residue whose phosphorylation by Akt was essential for the misfolding and loss of N-CoR protein. Moreover, Akt-induced phosphorylation of N-CoR contributed to the de-repression of Flt3, suggesting a cross talk between Akt signaling and N-CoR misfolding pathway in the pathogenesis of AML-M5. The N-CoR misfolding pathway could be the common downstream thread of pleiotropic Akt signaling activated by various oncogenic insults in some subtypes of leukemia and solid tumors.  相似文献   
70.

Aims

Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammation, which contributes to the pathological remodeling of the extracellular matrix. Although mechanical stress has been suggested to promote inflammation in AAA, the molecular mechanism remains uncertain. Periostin is a matricellular protein known to respond to mechanical strain. The aim of this study was to elucidate the role of periostin in mechanotransduction in the pathogenesis of AAA.

Methods and Results

We found significant increases in periostin protein levels in the walls of human AAA specimens. Tissue localization of periostin was associated with inflammatory cell infiltration and destruction of elastic fibers. We examined whether mechanical strain could stimulate periostin expression in cultured rat vascular smooth muscle cells. Cells subjected to 20% uniaxial cyclic strains showed significant increases in periostin protein expression, focal adhesion kinase (FAK) activation, and secretions of monocyte chemoattractant protein-1 (MCP-1) and the active form of matrix metalloproteinase (MMP)-2. These changes were largely abolished by a periostin-neutralizing antibody and by the FAK inhibitor, PF573228. Interestingly, inhibition of either periostin or FAK caused suppression of the other, indicating a positive feedback loop. In human AAA tissues in ex vivo culture, MCP-1 secretion was dramatically suppressed by PF573228. Moreover, in vivo, periaortic application of recombinant periostin in mice led to FAK activation and MCP-1 upregulation in the aortic walls, which resulted in marked cellular infiltration.

Conclusion

Our findings indicated that periostin plays an important role in mechanotransduction that maintains inflammation via FAK activation in AAA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号