首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   26篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   10篇
  2014年   8篇
  2013年   15篇
  2012年   21篇
  2011年   18篇
  2010年   12篇
  2009年   8篇
  2008年   14篇
  2007年   20篇
  2006年   14篇
  2005年   20篇
  2004年   22篇
  2003年   13篇
  2002年   13篇
  2001年   15篇
  2000年   22篇
  1999年   15篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1992年   8篇
  1991年   5篇
  1990年   8篇
  1989年   12篇
  1988年   10篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
31.
In this study, changes in UV sensitivity, a parameter of the clonal aging that has been studied in the daily reisolation culture, were examined in the logarithmically growing Paramecium culture. Cells in logarithmically growing cultures are thought to change the internal states under rapidly changing external conditions. In contrast, cells in daily reisolation cultures gradually change the internal states, the process being called clonal development and aging, under the external conditions that are kept almost constant. Cells were sampled at regular intervals, irradiated with UV, and examined for UV sensitivity assessed by the clonal survival. We found that log-phase cells showed low sensitivity to UV until they reached 2,000-3,000 cells/ml, and beyond that cell density, abruptly became highly UV sensitive. The extent of this increase in UV sensitivity was similar to that between two age groups, 130 fissions of clonal age apart. When cells from a culture of 2,000-3,000 cells/ml were resuspended in culture medium at various cell densities, they changed to UV sensitive only when the cultures reached over approximately 2,600 cells/ml. These results suggest that paramecia become UV sensitive in response to change in the nutrient level when cell density exceeds 2,000-3,000 cells/ml.  相似文献   
32.
33.
The fern Athyrium yokoscense is known to be highly tolerant to lead toxicity, and is a lead hyperaccumulator that can accumulate over 1,000 g g–1 of lead in its dry matter. In this work, we examined whether the gametophytic generation of A. yokoscense also resists lead toxicity like the sporophytic generation. Spore germination in A. yokoscense was more tolerant to Pb2+, compared to that in other fern species, such as Pteridium aquilinum, Lygodium japonicum and Pteris vittata. In addition, the early gametophyte development of A. yokoscense was not much affected by 10 M Pb2+, as evaluated from the prothallial growth and rhizoid development. We also showed that Athyrium gametophytes could accumulate more than 10,000 g g–1 of lead, and that the lead was localized in the cytosol and vacuole of rhizoidal cells, as determined by a transmission electron micrograph. These results indicate that Athyrium gametophytes have the ability to accumulate lead in the rhizoids. Furthermore, the gametophytes were found to include a large amount of proanthocyanidins (condensed tannins). Because proanthocyanidins have a latent ability to complex with lead ions, the possible roles of proanthocyanidins in the lead tolerance and accumulation of Athyrium gametophytes are discussed.  相似文献   
34.
To identify the branch migration activity in archaea, we fractionated Pyrococcus furiosus cell extracts by several chromatography and assayed for ATP-dependent resolution of synthetic Holliday junctions. The target activity was identified in the column fractions, and the optimal reaction conditions for the branch migration activity were determined using the partially purified fraction. We successfully cloned the corresponding gene by screening a heat-stable protein library made by P. furiosus genomic DNA. The gene, hjm (Holliday junction migration), encodes a protein composed of 720 amino acids. The Hjm protein is conserved in Archaea and belongs to the helicase superfamily 2. A homology search revealed that Hjm shares sequence similarity with the human PolTheta, HEL308, and Drosophila Mus308 proteins, which are involved in a DNA repair, whereas no similar sequences were found in bacteria and yeast. The Hjm helicase may play a central role in the repair systems of organisms living in extreme environments.  相似文献   
35.
Ueki S  Nakamura M  Komori T  Arata T 《Biochemistry》2005,44(1):411-416
Calcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y. (2003) Nature 424, 35-41]. In contrast to skeletal TnC, Ca(2+)-binding site I (an EF-hand motif that consists of an A helix-loop-B helix motif) is inactive in cardiac TnC. The question arising from comparisons with skeletal TnC is how both helices move according to Ca(2+) binding or interact with TnI in cardiac TnC. In this study, we examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a cardiac TnC monomer state and TnC-TnI binary complex by means of site-directed spin labeling electron paramagnetic resonance (EPR). Doubly spin-labeled TnC mutants were prepared, and the spin-spin distances were estimated by analyzing dipolar interactions with the Fourier deconvolution method. An interspin distance of 18.4 A was estimated for mutants spin labeled at G42C on the B helix and C84 on the D helix in a Mg(2+)-saturated monomer state. The interspin distance between Q58C on the C helix and C84 on the D helix was estimated to be 18.3 A under the same conditions. Distance changes were observed by the addition of Ca(2+) ions and the formation of a complex with TnI. Our data indicated that the C helix moved away from the D helix in a distinct Ca(2+)-dependent manner, while the B helix did not. A movement of the B helix by interaction with TnI was observed. Both Ca(2+) and TnI were also shown to be essential for the full opening of the N-domain in cardiac TnC.  相似文献   
36.
In subjects with Zellweger syndrome, the most severe phenotype of peroxisomal biogenesis disorder, brain abnormalities include cortical dysplasia, neuronal heterotopia, and dysmyelination. To clarify the relationship between the lack of peroxisomes and neuronal abnormalities, we investigated peroxisomal localization in the mouse cerebellum, using double immunofluorescent staining for peroxisomal proteins. On immunostaining for peroxisomal matrix protein, while there are few peroxisomes in Purkinje cells, many locate in astroglia, especially soma of Bergmann glia. Clusters of peroxisomes were seen on the inferior side of the Purkinje cell layer in mice on postnatal days 3-5, and with time there was a shift to the superior side. The peroxisomal punctate pattern was seen to be radial and co-localized with Bergmann glial fibers. In cultured cells from the mouse cerebellum, peroxisomes were few in Purkinje cells, whereas many were evident in glial fibrillary acidic protein-positive cells. On the other hand, on immunostaining for peroxisomal membrane protein Pex14p, many particles were seen in Purkinje cells during all developmental stages, which means Purkinje cells possessed empty peroxisomal structures similar to findings of fibroblasts from the Zellweger patients. As peroxisomes in glial cells may control the development of neurons, the neuron-glial interaction and mechanisms of developing central nervous systems deserve ongoing attention.  相似文献   
37.
38.
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.  相似文献   
39.
The initiator protein RepE of the mini-F plasmid in Escherichia coli plays an essential role in DNA replication, which is regulated by the molecular chaperone-dependent oligomeric state (monomer or dimer). Crosslinking, ultracentrifugation, and gel filtration analyses showed that the solely expressed N-terminal domain (residues 1-144 or 1-152) exists in the dimeric state as in the wild-type RepE protein. This result indicates that the N-terminal domain functions as a dimerization domain of RepE and might be important for the interaction with the molecular chaperones. The N-terminal domain dimer has been crystallized in order to obtain structural insight into the regulation of the monomer/dimer conversion of RepE.  相似文献   
40.
In mammalian cells, several observations indicate not only that phosphate transport probably regulates local inorganic phosphate (Pi) concentration, but also that Pi affects normal cellular metabolism, which in turn regulates apoptosis and the process of mineralization. To elucidate how extracellular Pi regulates cellular functions of pre-osteoblastic cells, we investigated the expression of type III sodium (Na)-dependent Pi transporters in rat bone marrow stromal cells and ROB-C26 pre-osteoblastic cells. The mRNA expression level of gibbon ape leukemia virus receptor (Glvr)-2 was increased by the addition of Pi in rat bone marrow stromal cells, but not in ROB-C26 or normal rat kidney (NRK) cells. In contrast, the level of Glvr-1 mRNA was not altered by the addition of extracellular Pi in these cells. The induction of Glvr-2 mRNA by Pi was inhibited in the presence of cycloheximide (CHX). Moreover, mitogen-activated protein kinase (MEK) /extracellular-signal-regulated kinase (ERK) pathway inhibitors; U0126 (1.4-diamino-2, 3-dicyano-1, 4-bis [2-amino-phenylthio] butadiene) and PD98059 (2'-Amino-3'-methoxyflavone) inhibited inducible Glvr-2 mRNA expression, but p38 MEK inhibitor SB203580 [4-(4'-fluorophenyl)-2-(4'-methyl-sulfinylphenyl)-5-(4'pyridyl) imidazole] did not inhibit the induction of Glvr-2 mRNA expression, suggesting that extracellular Pi regulates de novo protein synthesis and MEK/ERK activity in rat bone marrow stromal cells, and through these, induction of Glvr-2 mRNA. Although Pi also induced osteopontin mRNA expression in rat bone marrow stromal cells but not in ROB-C26 and NRK cells, changes in cell viability with the addition of Pi were similar in both cell types. These data indicate that extracellular Pi regulates Glvr-2 mRNA expression, provide insights into possible mechanisms whereby Pi may regulate protein phosphorylation, and suggest a potential role for the Pi transporter in rat bone marrow stromal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号