全文获取类型
收费全文 | 445篇 |
免费 | 64篇 |
专业分类
509篇 |
出版年
2022年 | 4篇 |
2021年 | 10篇 |
2020年 | 8篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 8篇 |
2016年 | 12篇 |
2015年 | 21篇 |
2014年 | 18篇 |
2013年 | 22篇 |
2012年 | 31篇 |
2011年 | 20篇 |
2010年 | 19篇 |
2009年 | 21篇 |
2008年 | 16篇 |
2007年 | 26篇 |
2006年 | 29篇 |
2005年 | 18篇 |
2004年 | 10篇 |
2003年 | 13篇 |
2002年 | 9篇 |
2001年 | 13篇 |
2000年 | 10篇 |
1999年 | 13篇 |
1998年 | 8篇 |
1997年 | 10篇 |
1996年 | 6篇 |
1994年 | 4篇 |
1992年 | 9篇 |
1991年 | 5篇 |
1990年 | 12篇 |
1989年 | 6篇 |
1988年 | 5篇 |
1987年 | 5篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 6篇 |
1983年 | 7篇 |
1981年 | 4篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1977年 | 5篇 |
1976年 | 2篇 |
1975年 | 3篇 |
1972年 | 3篇 |
1970年 | 3篇 |
1969年 | 3篇 |
1967年 | 3篇 |
1966年 | 3篇 |
排序方式: 共有509条查询结果,搜索用时 15 毫秒
21.
Zachary F. Kohl Michael S. Hedrick Stanley S. Hillman 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2013,183(7):921-932
Amphibian pulmonary and systemic vascular circuits are arranged in parallel, with potentially important consequences for resistance (R) to blood flow. The contribution of the parallel anatomic arrangement to total vascular R (R T), independent of blood viscosity, is unknown. We measured pulmonary (R P) and systemic (R S) vascular R with an in situ Ringer’s solution perfusion technique using anesthetized anuran and urodele species to determine: (1) relative contributions of vascular anatomy and blood viscosity to R T; (2) distensibility index (%Δ flow kPa?1) of the pulmonary and systemic vascular circuits; and (3) interspecific correlates of variation in these parameters with red blood cell size, cardiac power output, and aerobic capacities. R P was lower than R S in anurans, while R P of the urodeles was greater than R S and significantly greater than anuran R P. Anuran R T was lowest and did not vary interspecifically, whereas urodele R T was significantly greater than anuran, and varied interspecifically. Pulmonary and systemic circuit distensibility differences may explain cardiac shunt patterns in toads with changes in cardiac output from rest to activity. When blood viscosity was taken into account, vascular resistance accounted for about 25 % of R T while blood viscosity accounted for the remaining 75 %. Owing to lower R T, terrestrial anuran species required lower cardiac power outputs when moving fluid through their vasculature compared to aquatic species. These results indicate that physical characteristics of the vasculature can account for interspecific differences in cardiovascular physiology and suggest a co-evolution of cardiac and vascular anatomy among amphibians. 相似文献
22.
Kirsty J. MacLeod Kevin D. Kohl Brian K. Trevelline Tracy Langkilde 《Molecular ecology》2022,31(1):185-196
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology. 相似文献
23.
24.
Krüger M Kohl T Linke WA 《American journal of physiology. Heart and circulatory physiology》2006,291(2):H496-H506
The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA (>3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( approximately 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, stiffening their sarcomeres. Here we show that perinatal titin-isoform switching and corresponding passive stiffness (STp) changes do not occur in the hearts of guinea pig and sheep. In these species the shift toward "adult" proportions of N2B isoform is almost completed by midgestation. The relative contributions of titin and collagen to STp were estimated in force measurements on skinned cardiac muscle strips by selective titin proteolysis, leaving the collagen matrix unaffected. Titin-based STp contributed between 42% and 58% to total STp in late-fetal and adult sheep/guinea pigs and adult rats. However, only approximately 20% of total STp was titin based in late-fetal rat. Titin-borne passive tension and the proportion of titin-based STp generally scaled with the N2B isoform percentage. The titin isoform transitions were correlated to a switch in troponin-I (TnI) isoform expression. In rats, fetal slow skeletal TnI (ssTnI) was replaced by adult carciac TnI (cTnI) shortly after birth, thereby reducing the Ca2+ sensitivity of force development. In contrast, guinea pig and sheep coexpressed ssTnI and cTnI in fetal hearts, and skinned fibers from guinea pig showed almost no perinatal shift in Ca2+ sensitivity. We conclude that TnI-isoform and titin-isoform switching and corresponding functional changes during heart development are not initiated by birth but are genetically programmed, species-specific regulated events. 相似文献
25.
Todd Sformo F. Kohl J. McIntyre P. Kerr J. G. Duman B. M. Barnes 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2009,179(7):897-902
Freeze tolerance and freeze avoidance are typically described as mutually exclusive strategies for overwintering in animals.
Here we show an insect species that combines both strategies. Individual fungus gnats, collected in Fairbanks, Alaska, display
two freezing events when experimentally cooled and different rates of survival after each event (mean ± SEM: −31.5 ± 0.2°C,
70% survival and −50.7 ± 0.4°C, 0% survival). To determine which body compartments froze at each event, we dissected the abdomen
from the head/thorax and cooled each part separately. There was a significant difference between temperature levels of abdominal
freezing (−30.1 ± 1.1°C) and head/thorax freezing (−48.7 ± 1.3°C). We suggest that freezing is initially restricted to one
body compartment by regional dehydration in the head/thorax that prevents inoculative freezing between the freeze-tolerant
abdomen (71.0 ± 0.8% water) and the supercooled, freeze-sensitive head/thorax (46.6 ± 0.8% water). 相似文献
26.
Natacha Roudnitzky Maik Behrens Anika Engel Susann Kohl Sophie Thalmann Sandra Hübner Kristina Lossow Stephen P. Wooding Wolfgang Meyerhof 《PLoS genetics》2015,11(9)
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes. 相似文献
27.
For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore‐associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response. 相似文献
28.
C Kohl R Lesnik A Brinkmann A Ebinger A Radonić A Nitsche K Mühldorfer G Wibbelt A Kurth 《PloS one》2012,7(8):e43106
In recent years novel human respiratory disease agents have been described in South East Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with strong phylogenetic relationship to orthoreoviruses of flying foxes inhabiting these regions. Subsequently, a zoonotic bat-to-human transmission has been assumed. We report the isolation of three novel mammalian orthoreoviruses (MRVs) from European bats, comprising bat-borne orthoreovirus outside of South East Asia and Australia and moreover detected in insectivorous bats (Microchiroptera). MRVs are well known to infect a broad range of mammals including man. Although they are associated with rather mild and clinically unapparent infections in their hosts, there is growing evidence of their ability to also induce more severe illness in dogs and man. In this study, eight out of 120 vespertilionid bats proved to be infected with one out of three novel MRV isolates, with a distinct organ tropism for the intestine. One isolate was analyzed by 454 genome sequencing. The obtained strain T3/Bat/Germany/342/08 had closest phylogenetic relationship to MRV strain T3D/04, isolated from a dog. These novel reoviruses provide a rare chance of gaining insight into possible transmission events and of tracing the evolution of bat viruses. 相似文献
29.
Proline fed to intact soybean plants influences acetylene reducing activity and content and metabolism of proline in bacteroids 下载免费PDF全文
Supplying l-proline to the root system of intact soybean (Glycine max [L.] Merr.) plants stimulated acetylene reducing activity to the same extent as did supplying succinate. Feeding l-proline also caused an increase in bacteroid proline dehydrogenase activity that was highly correlated with the increase in acetylene-reducing activity. Twenty-four hours after irrigating with l-proline, endogenous proline content had increased in host cell cytoplasm and bacteroids, about three- and eightfold, respectively. In bacteroids, proline concentration was calculated to be at least 3.5 millimolar. In experiments in which [U-14C]l-proline was supplied to uprooted, intact plants incubated in aerated solution, 14C-labeled products of proline metabolism, as well as [14C]proline itself, accumulated in both host cells and bacteroids. When plants were incubated in aerated solutions containing [5-3H]l-proline, 3H-labeled proline was found in host cells and bacteroids. [3H] Pyrroline-5-carboxylate was found in bacteroids, but not host cells, after a 2-hour incubation in [5-3H]l-proline. When [U-14C]l-proline was supplied for 24 hours, a significant amount of [14C] pyrroline-5-carboxylate was found in the host cells, in contrast with the results from the shorter incubation in [5-3H]proline, although the amount in the host cells was only about half the quantity found in the bacteroids. Taken as a whole, these results indicate that proline crosses both plant and bacterial membranes under the in vivo experimental conditions utilized and are consistent with a significant role for proline as an energy source in support of bacteroid functioning. In spite of the increase in acetylene-reducing activity when proline was supplied to the root system of intact plants, proline application did not rescue stemgirdled plants from loss of acetylene-reducing activity, although succinate application did. This suggests a nonphloem route for succinate, but not proline, from roots to nodules. 相似文献
30.
The type II Na/phosphate cotransporters (NaPi-II) are critical for the control of plasma phosphate levels in vertebrates. NaPi-IIb mediates phosphate uptake from the small intestine followed by glomerular filtration and selective reabsorption from the renal proximal tubule by NaPi-IIa and NaPi-IIc. A C-terminal stretch of cysteine residues represents the hallmark of the NaPi-IIb isoforms. This motif is well conserved among NaPi-IIb type transporters but not found in other membrane proteins. To investigate the role of this motif we analyzed NaPi-II constructs in transiently and stably transfected MDCK cells. This cell line targets the NaPi-IIb isoforms from flounder and mouse to the apical membrane whereas the mouse IIa isoform shows no plasma membrane preference. Different parts of mouse NaPi-IIa and NaPi-IIb C-termini were fused to GFP-tagged flounder NaPi-II. The constructs showed strong staining of the plasma membrane with NaPi-IIb related constructs sorted predominantly apically, the IIa constructs localized apically and basolaterally with slight intracellular retention. When the cysteine stretch was inserted into the NaPi-IIa C-terminus, the construct was retained in a cytoplasmic compartment. 2-bromopalmitate, a specific palmitoylation inhibitor, released the transporter to apical and basolateral membranes. The drug also leads to a redistribution of the NaPi-IIb construct to both plasma membrane compartments. Immunoprecipitation of tagged NaPi-II constructs from [3H]-palmitate labeled MDCK cells indicated that the cysteine stretch is palmitoylated. Our results suggest that the modified cysteine motif prevents the constructs from basolateral sorting. Additional sorting determinants located downstream of the cysteine stretch may release the cargo to the apical compartment. 相似文献