首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9579篇
  免费   725篇
  国内免费   2篇
  2024年   5篇
  2023年   47篇
  2022年   118篇
  2021年   229篇
  2020年   140篇
  2019年   178篇
  2018年   231篇
  2017年   194篇
  2016年   323篇
  2015年   518篇
  2014年   598篇
  2013年   701篇
  2012年   843篇
  2011年   860篇
  2010年   562篇
  2009年   441篇
  2008年   568篇
  2007年   583篇
  2006年   506篇
  2005年   513篇
  2004年   429篇
  2003年   411篇
  2002年   354篇
  2001年   91篇
  2000年   66篇
  1999年   91篇
  1998年   97篇
  1997年   73篇
  1996年   57篇
  1995年   58篇
  1994年   49篇
  1993年   41篇
  1992年   33篇
  1991年   31篇
  1990年   38篇
  1989年   23篇
  1988年   17篇
  1987年   16篇
  1986年   16篇
  1985年   12篇
  1984年   17篇
  1983年   19篇
  1982年   17篇
  1981年   15篇
  1980年   10篇
  1979年   9篇
  1978年   10篇
  1977年   10篇
  1976年   7篇
  1975年   6篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
981.
Choline kinase catalyzes the phosphorylation of choline by ATP, the first committed step in the CDP-choline pathway for phosphatidylcholine biosynthesis. To begin to elucidate the mechanism of catalysis by this enzyme, choline kinase A-2 from Caenorhabditis elegans was analyzed by systematic mutagenesis of highly conserved residues followed by analysis of kinetic and structural parameters. Specifically, mutants were analyzed with respect to K(m) and k(cat) values for each substrate and Mg(2+), inhibitory constants for Mg(2+) and Ca(2+), secondary structure as monitored by circular dichroism, and sensitivity to unfolding in guanidinium hydrochloride. The most severe impairment of catalysis occurred with the modification of Asp-255 and Asn-260, which are located in the conserved Brenner's phosphotransferase motif, and Asp-301 and Glu-303, in the signature choline kinase motif. For example, mutation of Asp-255 or Asp-301 to Ala eliminated detectable catalytic activity, and mutation of Asn-260 and Glu-303 to Ala decreased k(cat) by 300- and 10-fold, respectively. Additionally, the K(m) for Mg(2+) for mutants N260A and E303A was approximately 30-fold higher than that of wild type. Several other residues (Ser-86, Arg-111, Glu-125, and Trp-387) were identified as being important: Catalytic efficiencies (k(cat)/K(m)) for the enzymes in which these residues were mutated to Ala were reduced to 2-25% of wild type. The high degree of structural similarity among choline kinase A-2, aminoglycoside phosphotransferases, and protein kinases, together with the results from this mutational analysis, indicates it is likely that these conserved residues are located at the catalytic core of choline kinase.  相似文献   
982.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between dihydropyridine receptors (DHPRs) in the plasma membrane and ryanodine receptors (RyRs) in the sarcoplasmic reticulum. However, it remains uncertain what regions, if any, of the two proteins interact with one another. Toward this end, it would be valuable to know the spatial interrelationships of DHPRs and RyRs within plasma membrane/sarcoplasmic reticulum junctions. Here we describe a new approach based on metabolic incorporation of biotin into targeted sites of the DHPR. To accomplish this, cDNAs were constructed with a biotin acceptor domain (BAD) fused to selected sites of the DHPR, with fluorescent protein (XFP) attached at a second site. All of the BAD-tagged constructs properly targeted to junctions (as indicted by small puncta of XFP) and were functional for excitation-contraction coupling. To determine whether the introduced BAD was biotinylated and accessible to avidin (approximately 60 kDa), myotubes were fixed, permeablized, and exposed to fluorescently labeled avidin. Upon expression in beta1-null or dysgenic (alpha1S-null) myotubes, punctate avidin fluorescence co-localized with the XFP puncta for BAD attached to the beta1a N- or C-terminals, or the alpha1S N-terminal or II-III loop. However, BAD fused to the alpha1S C-terminal was inaccessible to avidin in dysgenic myotubes (containing RyR1). In contrast, this site was accessible to avidin when the identical construct was expressed in dyspedic myotubes lacking RyR1. These results indicate that avidin has access to a number of sites of the DHPR within fully assembled (RyR1-containing) junctions, but not to the alpha1S C-terminal, which appears to be occluded by the presence of RyR1.  相似文献   
983.
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice   总被引:18,自引:0,他引:18  
Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.  相似文献   
984.
To investigate the role of Shc in IGF action and signaling in skeletal muscle cells, Shc protein levels were reduced in rat L6 myoblasts by stably overexpressing a Shc cDNA fragment in antisense orientation (L6/Shcas). L6/Shcas myoblasts showed marked reduction of the p66Shc protein isoform and no change in p52Shc or p46Shc proteins compared with control myoblasts transfected with the empty vector (L6/Neo). When compared with control, L6/Shcas myoblasts demonstrated 3-fold increase in Erk-1/2 phosphorylation under basal conditions and blunted Erk-1/2 stimulation by insulin-like growth factor I (IGF-I), in the absence of changes in total Erk-1/2 protein levels. Increased basal Erk-1/2 activation was paralleled by a greater proportion of phosphorylated Erk-1/2 in the nucleus of L6/Shcas myoblasts in the absence of IGF-I stimulation. The reduction of p66Shc in L6/Shcas myoblasts resulted in marked phenotypic abnormalities, such as rounded cell shape and clustering in islets or finger-like structures, and was associated with impaired DNA synthesis in response to IGF-I and lack of terminal differentiation into myotubes. In addition, L6/Shcas myoblasts were characterized by complete disruption of actin filaments and cell cytoskeleton. Treatment of L6/Shcas myoblasts with the MEK inhibitor PD98059 reduced the abnormal increase in Erk-1/2 activation to control levels and restored the actin cytoskeleton, re-establishing the normal cell morphology. Thus, the p66Shc isoform exerts an inhibitory effect on the mitogen-activated protein kinase signaling pathway in rodent myoblasts, which is necessary for maintenance of IGF responsiveness of the MEK/Erk pathway and normal cell phenotype.  相似文献   
985.
How can a large number of different phenotypes be generated by a limited number of genotypes? Promiscuity between different, structurally related and/or unrelated proteins seems to provide a plausible explanation to this pertinent question. Strategies able to predict such functional interrelations between different proteins are important to restrict the number of putative candidate proteins, which can then be subjected to time-consuming functional tests. Here we describe the use of the operon structure of the nematode genome to identify partner proteins in human cells. In this work we focus on ion channels proteins, which build an interface between the cell and the outside world and are responsible for a growing number of diseases in humans. However, the proposed strategy for the partner protein quest is not restricted to this scientific area but can be adopted in virtually every field of human biology where protein-protein interactions are assumed.  相似文献   
986.
Fibroblast growth factor receptor 1 (FGFR1) is a transmembrane protein capable of transducing stimulation by secreted FGFs. In addition, newly synthesized FGFR1 enters the nucleus in response to cellular stimulation and during development. Nuclear FGFR1 can transactivate CRE (cAMP responsive element), activate CRE-binding protein (CREB)-binding protein (CBP) and gene activities causing cellular growth and differentiation. Here, a yeast two-hybrid assay was performed to identify FGFR1-binding proteins and the mechanism of nuclear FGFR1 action. Ten FGFR1-binding proteins were identified. Among the proteins detected with the intracellular FGFR1 domain was a 90-kDa ribosomal S6 kinase (RSK1), a regulator of CREB, CBP, and histone phosphorylation. FGFR1 bound to the N-terminal region of RSK1. The FGFR1-RSK1 interaction was confirmed by co-immunoprecipitation and colocalization in the nucleus and cytoplasm of mammalian cells. Predominantly nuclear FGFR1-RSK1 interaction was observed in the rat brain during neurogenesis and in cAMP-stimulated cultured neural cells. In TE671 cells, transfected FGFR1 colocalized and coimmunoprecipitated, almost exclusively, with nuclear RSK1. Nuclear RSK1 kinase activity and RSK1 activation of CREB were enhanced by transfected FGFR1. In contrast, kinase-deleted FGFR1 (TK-), which did not bind to RSK1 failed to stimulate nuclear RSK1 activity or RSK1 activation of CREB. Kinase inactive FGFR1 (K514A) bound effectively to nuclear RSK1, but it failed to stimulate RSK1. Thus, active FGFR1 kinase regulates the functions of nuclear RSK1. The interaction of nuclear FGFR1 with pluripotent RSK1 offers a new mechanism through which FGFR1 may control fundamental cellular processes.  相似文献   
987.
Sphingosine kinase catalyses the phosphorylation of sphingosine to generate sphingosine 1-phosphate, a lipid signaling molecule implicated in roles in a diverse range of mammalian cell processes through its action as both a ligand for G-protein-coupled cell-surface receptors and an apparent intracellular second messenger. This paper describes a rapid, sensitive, and reproducible assay for sphingosine kinase activity using biotinylated sphingosine (biotinyl-Sph) as a substrate and capturing the phosphorylated product with streptavidin-coated membranes. We have shown that both human sphingosine kinase 1 and 2 (hSK1 and hSK2) can efficiently phosphorylate biotinyl-Sph, with K(m) values similar to those of sphingosine. The assay utilizing this substrate has high sensitivity for hSK1 and hSK2, with detection limits in the low-femtomole range for both purified recombinant enzymes. Importantly, we have also demonstrated the capacity of this assay to measure endogenous sphingosine kinase activity in crude cell extracts and to follow changes in this activity following sphingosine kinase activation. Together, these results demonstrate the potential utility of this assay in both cell-based analysis of sphingosine kinase signaling pathways and high-throughput screens for agents affecting sphingosine kinase activity in vitro.  相似文献   
988.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   
989.
We have recently identified a chondrocyte protein with a poly-proline region, referred to as CHPPR, and showed that this protein is expressed intracellularly in chick embryo chondrocytes. Conventional fluorescence and confocal localization of CHPPR shows that CHPPR is sorted to mitochondria. Furthermore, immunoelectron microscopy of CHPPR transfected cells demonstrates that this protein is mostly associated with the mitochondrial inner membranes. Careful analysis of CHPPR expressing cells reveals, instead of the regular mitochondrial tubular network, the presence of a number of small spheroid mitochondria. Here we show that the domain responsible for network-spheroid transition spans amino acid residues 182-309 including the poly-proline region. Functional analyses of mitochondrial activity rule out the possibility of mitochondrial damage in CHPPR transfected cells. Since cartilage expresses high levels of CHPPR mRNA when compared to other tissues and because CHPPR is associated with late stages of chondrocyte differentiation, we have investigated mitochondrial morphology in hypertrophic chondrocytes by MitoTracker Orange labeling. Confocal microscopy shows that these cells have spheroid mitochondria. Our data demonstrate that CHPPR is able to promote mitochondrial fission with a sequence specific mechanism suggesting that this event may be relevant to late stage of chondrocyte differentiation.  相似文献   
990.
A minor component of chromatin, the phospholipid fraction, changes during cell cycle as result of the activation of intranuclear lipid metabolism enzymes including phosphatidylcholine-dependent phospholipase C activity. It is known that this enzyme may be activated by phosphatidylcholine plasmalogen (Plg). Until now, there has been little evidences for the presence of Plgs inside the nucleus. The aim of our study is to ascertain if they are present in the nucleus and are responsible of the activation of phosphatidylcholine-dependent phospholipase C during cell proliferation and apoptosis. Therefore, we have analysed the Plg composition of the whole homogenate, cytosol, nuclei and chromatin of hepatocytes. The phosphatidylcholine-dependent phospholipase C activity was assayed using both phosphatidylcholine and plasmalogenyl-phosphatidylcholine as substrates. Our results show, for the first time, that Plgs are present in chromatin and the plasmalogenyl-phosphatidylcholine stimulates the phosphatidylcholine-dependent phospholipase C activity more than phosphatidylcholine. Finally, in order to verify the possible role of these molecules during cell proliferation and apoptosis, we used liver of rats fed with ciprofibrate which stimulates hepatocytes proliferation during the treatment and, after withdrawal, apoptosis. After 3 days of ciprofibrate treatment, the chromatin plasmalogenyl-phosphatidylcholine increases as well as the phosphatidylcholine-dependent phospholipase C activity. After drug withdrawal, when the hepatocytes undergo to apoptosis, the plasmalogenyl-phosphatidylcholine content together with phosphatidylcholine-dependent phospholipase C activity decreases. Therefore, it can be concluded that plamalogens are present in the chromatin, and probably may have a function both in regulating phosphatidylcholine dependent phospholipase C and cell cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号