首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   50篇
  842篇
  2023年   2篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   17篇
  2015年   18篇
  2014年   23篇
  2013年   50篇
  2012年   52篇
  2011年   54篇
  2010年   30篇
  2009年   37篇
  2008年   56篇
  2007年   61篇
  2006年   66篇
  2005年   43篇
  2004年   50篇
  2003年   59篇
  2002年   43篇
  2001年   4篇
  2000年   5篇
  1999年   12篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   14篇
  1994年   9篇
  1993年   13篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有842条查询结果,搜索用时 15 毫秒
51.
Coordination between the nucleotide-binding site and the converter domain of myosin is essential for its ATP-dependent motor activities. To unveil the communication pathway between these two sites, we investigated contact between side chains of Phe-482 in the relay helix and Gly-680 in the SH1-SH2 helix. F482A myosin, in which Phe-482 was changed to alanine with a smaller side chain, was not functional in vivo. In vitro, F482A myosin did not move actin filaments and the Mg2+-ATPase activity of F482A myosin was hardly activated by actin. Phosphate burst and tryptophan fluorescence analyses, as well as fluorescence resonance energy transfer measurements to estimate the movements of the lever arm domain, indicated that the transition from the open state to the closed state, which precedes ATP hydrolysis, is very slow. In contrast, F482A/G680F doubly mutated myosin was functional in vivo and in vitro. The fact that a larger side chain at the 680th position suppresses the defects of F482A myosin suggests that the defects are caused by insufficient contact between side chains of Ala-482 and Gly-680. Thus, the contact between these two side chains appears to play an important role in the coordinated conformational changes and subsequent ATP hydrolysis.  相似文献   
52.
53.
Neuroglycan C (NGC) is a brain-specific transmembrane chondroitin sulfate proteoglycan. In the present study, we examined whether NGC could be phosphorylated in neural cells. On metabolic labeling of cultured cerebral cortical cells from the rat fetus with (32)P(i), serine residues in NGC were radiolabeled. Some NGC became detectable in the raft fraction from the rat cerebrum, a signaling microdomain of the plasma membrane, with cerebral development. NGC from the non-raft fraction, not the raft fraction, could be phosphorylated by an in vitro kinase reaction. The phosphorylation of NGC was inhibited by adding to the reaction mixture a recombinant peptide representing the ectodomain of NGC, but not by adding a peptide representing its cytoplasmic domain. NGC could be labeled by an in vitro kinase reaction using [gamma-(32)P]GTP as well as [gamma-(32)P]ATP, and this kinase activity was partially inhibited by 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole, a selective inhibitor of casein kinase II. In addition to the intracellular phosphorylation, NGC was also phosphorylated at the cell surface by an ectoprotein kinase. This is the first report to demonstrate that NGC can be phosphorylated both intracellularly and pericellularly, and our findings suggest that a kinase with a specificity similar to that of casein kinase II is responsible for the NGC ectodomain phosphorylation.  相似文献   
54.
We have focused on activation mechanisms of calcium/calmodulin-dependent protein kinase (CaM) kinase I in the hippocampal neurons and compared them with that of CaM kinase IV. Increased activation of CaM kinase I occurred by stimulation with glutamate and depolarization in cultured rat hippocampal neurons. Similar to CaM kinases II and IV, CaM kinase I was essentially activated by stimulation with the NMDA receptor. Although both CaM kinases I and IV seem to be activated by CaM kinase kinase, the activation of CaM kinase I was persistent during stimulation with glutamate in contrast to a transient activation of CaM kinase IV. In addition, CaM kinase I was activated in a lower concentration of glutamate than that of CaM kinase IV. Depolarization-induced activation of CaM kinase I was also evident in the cultured neurons and was largely blocked by nifedipine. In the experiment with 32P-labeled cells, phosphorylation of CaM kinase I was stimulated by glutamate treatment and depolarization. The glutamate- and depolarization-induced phosphorylation was inhibited by the NMDA receptor antagonist and nifedipine, respectively. These results suggest that, although CaM kinases I and IV are activated by the NMDA receptor and depolarization stimulation, these kinase activities are differently regulated in the hippocampal neurons.  相似文献   
55.
Venomous snakes have various types of phospholipase A(2) inhibitory proteins (PLIs) in their circulatory system to protect them from attack by their own phospholipase A(2)s (PLA(2)s). Here we show the first evidence for the existence of circulating PLI against secretory PLA(2)s (sPLA(2)s) in mammals. In mouse serum, we detected specific binding activities of group IB and X sPLA(2)s, which was in contrast with the absence of binding activities in serum prepared from mice deficient in PLA(2) receptor (PLA(2)R), a type I transmembrane glycoprotein related to the C-type animal lectin family. Western blot analysis after partial purification with group IB sPLA(2) affinity column confirmed the identity of serum sPLA(2)-binding protein as a soluble form of PLA(2)R (sPLA(2)R) that retained all of the extracellular domains of the membrane-bound receptor. Both purified sPLA(2)R and the recombinant soluble receptor having all of the extracellular portions blocked the biological functions of group X sPLA(2), including its potent enzymatic activity and its binding to the membrane-bound receptor. Protease inhibitor tests with PLA(2)R-overexpressing Chinese hamster ovary cells suggested that sPLA(2)R is produced by cleavage of the membrane-bound receptor by metalloproteinases. Thus, sPLA(2)R is the first example of circulating PLI that acts as an endogenous inhibitor for enzymatic activities and receptor-mediated functions of sPLA(2)s in mice.  相似文献   
56.
The biochemical aspects of the initiation of DNA replication in Mycobacterium avium are unknown. As a first step towards understanding this process, M. avium DnaA protein, the counterpart of Escherichia coli replication initiator protein, was overproduced in E. coli with an N-terminal histidine tag and purified to homogeneity on a nickel affinity column. The recombinant DnaA protein bound both ATP and ADP with high affinity and showed a weak ATPase activity. ADP, following the hydrolysis of ATP, remained bound to the protein strongly and the exchange of ATP for bound ADP was found to be weak. Acidic phospholipids such as phosphatidylinositol, phosphatidylglycerol, and cardiolipin, promoted the dissociation of ADP from the DnaA protein, whereas the neutral phospholipid, phosphatidylethanolamine, did not. The phospholipid promoted dissociation of ADP from DnaA protein was stimulated in the presence of the M. avium origin of replication. We suggest that the initiation of DNA replication in M. avium involves an interplay among DnaA, adenine nucleotides and phospholipids.  相似文献   
57.
1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds.2. In saturation binding studies with increasing concentrations (0.77–200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a K D of 71 pM and a B max of 120 fmol mg–1. When 1.0 M BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of K D and 8.0 fmol mg–1 of B max, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (K D, 72 pM; B max, 110 fmol mg–1).3. Competition binding studies with a fixed amount (3.8 pM) of 125I-ET-1 revealed that when 1.0 M BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K is of 140, 18, 350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123.4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 M BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K is of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 M BQ-123.5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c.6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA–ETB receptor heterodimer.  相似文献   
58.
59.
Hotta K  Takahashi H  Ueno N  Gojobori T 《Gene》2003,317(1-2):165-185
Non-canonical Wnt signals similar to planar cell polarity (PCP) signaling in the fly control convergent extension (CE) of the dorsal mesoderm during gastrulation in vertebrates. Using the Ciona complete genome sequence and EST sequence data, we present here an initial and exhaustive search in non-vertebrate chordates, Ciona intestinalis for the family members as well as homologs or orthologs that are involved in PCP/CE signaling cascades. We clarified 7 cardinal gene families, including the MAPK, STE20 group kinase, Rho small GTPase, STAT, Glypican, Fz and Wnt gene families, as well as gene homologs or orthologs for known PCP/CE signaling components with their phylogenetic nature. As a result, we characterized 62 Ciona component genes. Among them, 59 genes were novel and functional genes which were supported by EST expressions and 15 genes belonged to PCP/CE component orthologs of other organisms or common ancestor genes. Moreover, from the phylogenetic point of view, we compared these components genome-widely with the PCP signaling components of fly and the CE signaling components of vertebrates. We then discovered not only that ascidians contain the basic ancestral signaling pathway components in chordates but also that several signaling components have not found in ascidian, indicating that ascidian CE pathway might have several gaps from vertebrate CE pathway. The present study provides an initial step for the subsequent analysis of CE in the non-vertebrate chordates, ascidians. In addition, this phylogenetic approach will help to facilitate understanding of the relationship between fly PCP signaling and the vertebrate CE pathway.  相似文献   
60.
Putative functions of nucleoside diphosphate kinase in plants and fungi   总被引:4,自引:0,他引:4  
The putative functions of NDP (nucleoside diaphosphate) kinases from various organisms focusing to fungi and plants are described. The biochemical reactions catalyzed by NDP kinase are as follows. (i) Phosphotransferring activity from mainly ATP to cognate NDPs generating nucleoside triphosphates (NTPs). (ii) Autophosphorylation activity from ATP and GTP. (iii) Protein kinase (phosphotransferring) activity phosphorylating such as myelin basic protein. NDP kinase could function to provide NTPs as a housekeeping enzyme. However, recent works proved possible functions of the NDP kinases in the processes of signal transduction in various organisms, as described below. By use of the extracts of the mycelia of a filamentous fungus Neurospora crassa blue-light irradiation could increase the phosphorylation of a 15-kDa protein, which was purified and identified to be NDP kinase (NDK-1). By use of the etiolated seedlings of Pisum sativum cv Alaska and Oryza sativa red-light irradiation of intact plants increased the phosphorylation of NDP kinase. However, successive irradiation by red–far-red reversed the reaction, indicating that phytochrome-mediated light signals are transduced to the phosphorylation of NDP kinase. NDP kinase localizing in mitochondria is encoded by nuclear genome and different from those localized in cytoplasm. NDP kinase in mitochondria formed a complex with succinyl CoA synthetase. In Spinicia oleraceae two different NDP kinases were detected in the chloroplast, and in Pisum sativum two forms of NDP kinase originated from single species of mRNA could be detected in the choloroplast. However, the function of NDP kinases in the choloroplast is not yet known. In Neurospora crassa a Pro72His mutation in NDP kinase (ndk-1 Pro72His ) deficient in the autophosphorylation and protein kinase activity resulted in lacking the light-induced polarity of perithecia. In wild-type directional light irradiation parallel to the solid medium resulted in the formation of the perithecial beak at the top of perithecia, which was designated as light-induced polarity of perithecia. In wild-type in darkness the beak was formed at random places on perithecia, and in ndk Pro72His mutant the perithecial beak was formed at random places even under directional light illumination. The introduction of genomic DNA and cDNA for ndk-1 demonstrated that the wild-type DNAs suppressed the mutant phenotype. With all these results except for the demonstration in Neurospora, most of the phenomena are elusive and should be solved in the molecular levels concerning with NDP kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号