首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   67篇
  国内免费   3篇
  1069篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   4篇
  2016年   19篇
  2015年   24篇
  2014年   31篇
  2013年   52篇
  2012年   67篇
  2011年   60篇
  2010年   39篇
  2009年   50篇
  2008年   69篇
  2007年   71篇
  2006年   74篇
  2005年   54篇
  2004年   63篇
  2003年   74篇
  2002年   55篇
  2001年   11篇
  2000年   11篇
  1999年   13篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   18篇
  1994年   11篇
  1993年   14篇
  1992年   11篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1973年   6篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
排序方式: 共有1069条查询结果,搜索用时 11 毫秒
81.
The tuberous stem of kohlrabi is an important quantitative trait, which affects its yield and quality. Genetic control of this trait has not yet been unveiled. To identify the QTLs controlling stem swelling of kohlrabi, a BC1 population of 92 plants was developed from a cross of broccoli DH line GCP04 and kohlrabi var. Seine. A wide range of variation in tuberous stem diameter was observed among the mapping populations. We constructed a genetic map of nine linkage groups (LGs) with different types of markers, spanning a total length of 913.5 cM with an average marker distance of 7.55 cM. Four significant QTLs for radial enlargement of kohlrabi stem, namely, REnBo1, REnBo2, REnBo3, and REnBo4 were detected on C02, C03, C05, and C09, respectively, and accounted for the phenotypic variation of 59% for the stem diameter and 55% for the qualitative grading of tuberous stem in classes. Then, we confirmed the stability of identified QTLs using BC1S1 populations derived from the BC1 plants having heterozygous alleles at the target QTL and homozygous kohlrabi alleles at the remaining QTLs. REnBo1and REnBo2 using 128 plants of BC168S1 and 94 plants of BC143S1, respectively, and REnBo3 and REnBo4 using 152 plants of BC157S1 were detected at the same positions as the respective QTLs of the BC1 population. Confirmation of QTLs in two successive generations indicates that the QTLs are persistent. The QTLs obtained in this study could be useful in marker-assisted selection of kohlrabi breeding, and to understand the genetic mechanisms of stem swelling and storage organ development in kohlrabi and other Brassica species.  相似文献   
82.
Synaptic plasticity is considered to play a crucial role in the experience-dependent self-organization of local cortical networks. In the absence of sensory stimuli, cerebral cortex exhibits spontaneous membrane potential transitions between an UP and a DOWN state. To reveal how cortical networks develop spontaneous activity, or conversely, how spontaneous activity structures cortical networks, we analyze the self-organization of a recurrent network model of excitatory and inhibitory neurons, which is realistic enough to replicate UP–DOWN states, with spike-timing-dependent plasticity (STDP). The individual neurons in the self-organized network exhibit a variety of temporal patterns in the two-state transitions. In addition, the model develops a feed-forward network-like structure that produces a diverse repertoire of precise sequences of the UP state. Our model shows that the self-organized activity well resembles the spontaneous activity of cortical networks if STDP is accompanied by the pruning of weak synapses. These results suggest that the two-state membrane potential transitions play an active role in structuring local cortical circuits.  相似文献   
83.
84.
85.
The roles of Glu(73), which has been proposed to be a catalytic residue of goose type (G-type) lysozyme based on X-ray structural studies, were investigated by means of its replacement with Gln, Asp, and Ala using ostrich egg-white lysozyme (OEL) as a model. No remarkable differences in secondary structure or substrate binding ability were observed between the wild type and Glu(73)-mutated proteins, as evaluated by circular dichroism (CD) spectroscopy and chitin-coated celite chromatography. Substitution of Glu(73) with Gln or Ala abolished the enzymatic activity toward both the bacterial cell substrate and N-acetylglucosamine pentamer, (GlcNAc)(5), while substitution with Asp did not abolish but drastically reduced the activity of OEL. These results demonstrate that the carboxyl group of Glu(73) is directly involved in the catalytic action of G-type lysozyme. Furthermore, the stabilities of all three mutants, which were determined from the thermal and guanidine hydrochloride (GdnHCl) unfolding curves, respectively, were significantly decreased relative to those of the wild type. The results obtained clearly indicate the crucially important roles of Glu(73) in the structural stability as well as in the catalytic activity of G-type lysozyme.  相似文献   
86.
Human β-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of α- and β-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using α-1,6-mannosyltransferase-deficient (och1Δ) yeast as the host. Genes encoding the α- and β-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (αα) and HexB (ββ). A total of 57 mg of β-hexosaminidase isozymes, of which 13 mg was HexA (αβ), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the β-subunit. The purified HexA was treated with α-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 ± 0.1 and 1.7 ± 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the β-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.  相似文献   
87.
88.
We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser332 by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser332 by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.  相似文献   
89.
Olfactory bulbectomized (OBX) mice showed significant impairment of learning and memory-related behaviors 14 days after olfactory bulbectomy, as measured by passive avoidance and Y-maze tasks. We here observed a large impairment of hippocampal long-term potentiation (LTP) in the OBX mice. Concomitant with decreased acetylcholinesterase expression, protein kinase C (PKC)alpha autophosphorylation and NR1(Ser-896) phosphorylation significantly decreased in the hippocampal CA1 region of OBX mice. Both PKCalpha and NR1(Ser-896) phosphorylation significantly increased following LTP in the control mice, whereas increases were not observed in OBX mice. Like PKC activities, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation significantly decreased in the hippocampal CA1 region of OBX mice as compared with that of control mice. In addition, increased CaMKII autophosphorylation following LTP was not observed in OBX mice. Finally, the impairment of CaMKII autophosphorylation was closely associated with reduced pGluR1(Ser-831) phosphorylation, without change in synapsin I (site 3) phosphorylation in the hippocampal CA1 region of OBX mice. Taken together, in OBX mice NMDA receptor hypofunction, possibly through decreased PKCalpha activity, underlies decreased CaMKII activity in the post-synaptic regions, thereby impairing LTP induction in the hippocampal CA1 region. Both decreased PKC and CaMKII activities with concomitant LTP impairment account for the learning disability observed in OBX mice.  相似文献   
90.
Human tryptophanyl-tRNA synthetase (TrpRS) is secreted into the extracellular region of vascular endothelial cells. The splice variant form (mini TrpRS) functions in vascular endothelial cell apoptosis as an angiostatic cytokine. In contrast, the closely related human tyrosyl-tRNA synthetase (TyrRS) functions as an angiogenic cytokine in its truncated form (mini TyrRS). Here, we determined the crystal structure of human mini TrpRS at a resolution of 2.3 A and compared the structure with those of prokaryotic TrpRS and human mini TyrRS. Deletion of the tRNA anticodon-binding (TAB) domain insertion, consisting of eight residues in the human TrpRS, abolished the enzyme's apoptotic activity for endothelial cells, whereas its translational catalysis and cell-binding activities remained unchanged. Thus, we have identified the inserted peptide motif that activates the angiostatic signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号