首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   77篇
  国内免费   1篇
  1432篇
  2023年   8篇
  2022年   16篇
  2021年   29篇
  2020年   11篇
  2019年   25篇
  2018年   24篇
  2017年   31篇
  2016年   28篇
  2015年   47篇
  2014年   68篇
  2013年   84篇
  2012年   94篇
  2011年   82篇
  2010年   55篇
  2009年   38篇
  2008年   95篇
  2007年   73篇
  2006年   67篇
  2005年   58篇
  2004年   74篇
  2003年   58篇
  2002年   65篇
  2001年   30篇
  2000年   24篇
  1999年   26篇
  1998年   13篇
  1997年   7篇
  1996年   14篇
  1995年   9篇
  1994年   14篇
  1993年   6篇
  1992年   24篇
  1991年   13篇
  1990年   17篇
  1989年   16篇
  1988年   16篇
  1987年   9篇
  1986年   6篇
  1985年   3篇
  1984年   13篇
  1983年   4篇
  1982年   4篇
  1981年   9篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1970年   2篇
  1966年   3篇
  1965年   2篇
排序方式: 共有1432条查询结果,搜索用时 15 毫秒
71.
Enzymatically prepared alginate oligomer (AO) promoted the growth of Chlamydomonas reinhardtii in a concentration-dependent manner. AO at 2.5 mg/mL induced increase in expression levels of cyclin A, cyclin B, and cyclin D in C. reinhardtii. CuSO4 at 100 μM suppressed the growth of C. reinhardtiin, and AO at 2.5 mg/mL significantly alleviated the toxicity of CuSO4. Increased intracellular reactive oxygen species level in C. reinhardtii induced by CuSO4 was reduced by AO. After cultivation with CuSO4 at 100 μM, expression levels of ascorbate peroxidase and superoxide dismutase in C. reinhardtii were increased, and AO reduced the increased levels of these enzymes. These results suggest that AO exhibits beneficial effects on C. reinhardtii through influencing the expression of various genes not only at normal growth condition but also under CuSO4 stress.  相似文献   
72.
Structural modification of imiquimod (1), which is known as an interferon-alpha (IFN-alpha) inducer, for the aim of finding a novel and small-molecule tumor necrosis factor-alpha (TNF-alpha) suppressor and structure-activity relationship (SAR) are described. Structural modification of a imiquimod analogue, 4-amino-1-[2-(1-benzyl-4-piperidyl)ethyl-1H-imidazo[4,5-c]quinoline (2), which had moderate TNF-alpha suppressing activity without IFN-alpha inducing activity, led to a finding of 4-chloro-2-phenyl-1-[2-(4-piperidyl)ethyl]-1H-imidazo[4,5-c]quinoline (10) with potent TNF-alpha suppressing activity. The relation between conformational direction of 2-(4-piperidyl)ethyl group at position 1 and TNF-alpha suppressing activity is also demonstrated by NMR.  相似文献   
73.
EphA2, a member of the Eph receptor family, is frequently overexpressed in a variety of human cancers, including breast cancers, and promotes cancer cell motility and invasion independently of its ligand ephrin stimulation. In this study, we identify Ephexin4 as a guanine nucleotide exchange factor (GEF) for RhoG that interacts with EphA2 in breast cancer cells, and knockdown and rescue experiments show that Ephexin4 acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. The activation of RhoG recruits its effector ELMO2 and a Rac GEF Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. In addition, the Dock4-mediated Rac activation is required for breast cancer cell migration. Our findings reveal a novel link between EphA2 and Rac activation that contributes to the cell motility and invasiveness of breast cancer cells.  相似文献   
74.
The inhibitory Smads (I-Smads), i.e. Smad6 and Smad7, are negative regulators of transforming growth factor-β (TGF-β) family signaling. I-Smads inhibit TGF-β family signaling principally through physical interaction with type I receptors (activin receptor-like kinases), so as to compete with receptor-regulated Smads (R-Smads) for activation. However, how I-Smads interact with type I receptors is not well understood. In the present study, we found that Smad7 has two modes of interaction with type I receptors. One is through a three-finger-like structure in the MH2 domain, consisting of residues 331–361, 379–387, and the L3 loop. The other is through a basic groove in the MH2 domain (Mochizuki, T., Miyazaki, H., Hara, T., Furuya, T., Imamura, T., Watabe, T., and Miyazono, K. (2004) J. Biol. Chem. 279, 31568–31574). We also found that Smad6 principally utilizes a basic groove in the MH2 domain for interaction with type I receptors. Smad7 thus has an additional mode of interaction with TGF-β family type I receptors not possessed by Smad6, which may play roles in mediating the inhibitory effects unique to Smad7.  相似文献   
75.
During the course of immunization of (C3H × DBA/2)F1 mice (genotype H-2k/b) with L cell (H-2k/k)/L1210 leukemia cell (H-2d/d) hybrids and L1210 leukemia cells, some of them produced a good titer of anti-self-H-2 (H-2d) antibodies. Antigens recognized by this anti-self-H-2 antiserum were shown to be controlled by the H-2K-IA-IB-IJ-IE subregions of the H-2d but not H-2k nor H-2b haplotypes of parental as well as F1 origins and to have a tissue distribution identical to that of class 1 H-2 (H-2K/D) antigens.  相似文献   
76.
Vesicle-associated membrane protein–associated protein (VAP) is an endoplasmic reticulum (ER)-resident integral membrane protein that controls a nonvesicular mode of ceramide and cholesterol transfer from the ER to the Golgi complex by interacting with ceramide transfer protein and oxysterol-binding protein (OSBP), respectively. We report that VAP and its interacting proteins are required for the processing and secretion of pancreatic adenocarcinoma up-regulated factor, whose transport from the trans-Golgi network (TGN) to the cell surface is mediated by transport carriers called “carriers of the trans-Golgi network to the cell surface” (CARTS). In VAP-depleted cells, diacylglycerol level at the TGN was decreased and CARTS formation was impaired. We found that VAP forms a complex with not only OSBP but also Sac1 phosphoinositide phosphatase at specialized ER subdomains that are closely apposed to the trans-Golgi/TGN, most likely reflecting membrane contact sites. Immobilization of ER–Golgi contacts dramatically reduced CARTS production, indicating that association–dissociation dynamics of the two membranes are important. On the basis of these findings, we propose that the ER–Golgi contacts play a pivotal role in lipid metabolism to control the biogenesis of transport carriers from the TGN.  相似文献   
77.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and 7 susceptibility loci originally identified by European genome-wide association study (GWAS) in 2012: ZMIZ1, KLHDC5, TLE1, ANKRD55, CILP2, MC4R, and BCAR1. We also examined the association of 3 additional loci: CCND2 and GIPR, identified in sex-differentiated analyses, and LAMA1, which was shown to be associated with non-obese European type 2 diabetes.MethodsWe genotyped 6,972 Japanese participants (4,280 type 2 diabetes patients and 2,692 controls) for each of the 10 single nucleotide polymorphisms (SNPs): rs12571751 in ZMIZ1, rs10842994 near KLHDC5, rs2796441 near TLE1, rs459193 near ANKRD55, rs10401969 in CILP2, rs12970134 near MC4R, rs7202877 near BCAR1, rs11063069 near CCND2, rs8108269 near GIPR, and rs8090011 in LAMA1 using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using a logistic regression analysis.ResultsAll SNPs examined in this study had the same direction of effect (odds ratio > 1.0, p = 9.77 × 10-4, binomial test), as in the original reports. Among them, rs12571751 in ZMIZ1 was significantly associated with type 2 diabetes [p = 0.0041, odds ratio = 1.123, 95% confidence interval 1.037–1.215, adjusted for sex, age and body mass index (BMI)], but we did not observe significant association of the remaining 9 SNP loci with type 2 diabetes in the present Japanese population (p ≥ 0.005). A genetic risk score, constructed from the sum of risk alleles for the 7 SNP loci identified by un-stratified analyses in the European GWAS meta-analysis were associated with type 2 diabetes in the present Japanese population (p = 2.3 × 10-4, adjusted for sex, age and BMI).ConclusionsZMIZ1 locus has a significant effect on conferring susceptibility to type 2 diabetes also in the Japanese population.  相似文献   
78.
79.
To understand the physiological basis of methanogenic archaea living on interspecies H(2) transfer, the protein expression of a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH, was investigated in both pure culture and syntrophic coculture with an anaerobic butyrate oxidizer Syntrophothermus lipocalidus strain TGB-C1 as an H(2) supplier. Comparative proteomic analysis showed that global protein expression of methanogen cells in the model coculture was substantially different from that of pure cultured cells. In brief, in syntrophic coculture, although methanogenesis-driven energy generation appeared to be maintained by shifting the pathway to the alternative methyl coenzyme M reductase isozyme I and cofactor F(420)-dependent process, the machinery proteins involved in carbon fixation, amino acid synthesis, and RNA/DNA metabolisms tended to be down-regulated, indicating restrained cell growth rather than vigorous proliferation. In addition, our proteome analysis revealed that α subunits of proteasome were differentially acetylated between the two culture conditions. Since the relevant modification has been suspected to regulate proteolytic activity of the proteasome, the global protein turnover rate could be controlled under syntrophic growth conditions. To our knowledge, the present study is the first report on N-acetylation of proteasome subunits in methanogenic archaea. These results clearly indicated that physiological adaptation of hydrogenotrophic methanogens to syntrophic growth is more complicated than that of hitherto proposed.  相似文献   
80.
Deoxyribonuclease I (DNase I) activity in serum has been shown to be a novel diagnostic marker for the early detection of acute myocardial infarction (AMI). However, the conventional method to measure DNase I activity is time-consuming. In the current study, to develop a rapid assay method for DNase I activity for clinical purposes, a microchip electrophoresis device was used to measure DNase I activity. Because DNase I is an endonuclease that degrades double-stranded DNA endo-nucleolytically to produce oligonucleotides, degradation of the DNA standard caused by DNase I action was detected using microchip electrophoresis. We detected DNase I activity within 10 min. This is the first study to apply microchip electrophoresis for the detection of DNase I activity; furthermore, it seems plausible that reduction of analysis time for DNase I activity could make this novel assay method using microchip electrophoresis applicable in clinical use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号