首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   43篇
  国内免费   1篇
  2023年   6篇
  2022年   6篇
  2021年   27篇
  2020年   10篇
  2019年   21篇
  2018年   21篇
  2017年   20篇
  2016年   19篇
  2015年   32篇
  2014年   49篇
  2013年   67篇
  2012年   73篇
  2011年   58篇
  2010年   42篇
  2009年   30篇
  2008年   73篇
  2007年   50篇
  2006年   42篇
  2005年   42篇
  2004年   48篇
  2003年   39篇
  2002年   38篇
  2001年   3篇
  2000年   3篇
  1999年   9篇
  1998年   5篇
  1997年   1篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有890条查询结果,搜索用时 578 毫秒
131.
Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors and mediate a variety of cellular responses through the binding of LPA. So far, six types of LPA receptors (LPA receptor-1 (LPA?) to LPA?) have been identified. Recently, it has been demonstrated that each LPA receptor has opposite effects on malignant property of cancer cells. In this study, to evaluate an involvement of LPA receptors on angiogenic process in mammary tumor cells, we generated Lpar1- and Lpar3-expressing (FM3A-a1 and FM3A-a3A9, respectively) cells from FM3A cells, and investigated the effects on cell proliferation and migration abilities of endothelial F-2 cells by those cells. In Vegf-A and Vegf-C genes, FM3A-a1 cells indicated high expression and FM3A-a3A9 cells showed low expression, compared with control cells. When F-2 cells were cultured with a supernatant from FM3A-a1 cells, the cell growth rate and migration ability of F-2 cells was significantly higher than control cells. By contrast, a supernatant from FM3A-a3A9 cells significantly inhibited those abilities of F-2 cells. These results suggest that LPA? and LPA? may play opposite roles on the regulation of endothelial cells in mouse mammary tumor FM3A cells.  相似文献   
132.
Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon.  相似文献   
133.
We investigated whole-plant leaf area in relation to ontogenetic variation in leaf-size for a forest perennial herb, Cardiocrinum cordatum. The 200-fold ontogenetic variability in C. cordatum leaf area followed a power-law dependence on total leaf number, a measure of developmental stage. When we normalized for plant size, the function describing the size of single leaves along the stem was similar among different-sized plants, implying that the different-sized canopies observed at different times in the growth trajectory were fundamentally similar to each other. We conclude that the growth trajectory of a population of C. cordatum plant leaves obeyed a dynamic scaling law, the first reported for a growth trajectory at the whole-plant level.  相似文献   
134.
135.
ABSTRACT: The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies are reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP , ADP1 and ADP2. Using pharmacological approaches, we found that LI neurons receive both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.  相似文献   
136.
When cells traversing G(1) are irradiated with UV light, two parallel damage checkpoint pathways are activated: Chk1-Cdc25A and p53-p21(WAF1/CIP1), both targeting Cdk2, but the latter inducing a long lasting arrest. In similarly treated S phase-progressing cells, however, only the Cdc25A-dependent checkpoint is active. We have recently found that the p21-dependent checkpoint can be activated and induce a prolonged arrest if S phase cells are damaged with a base-modifying agent, such as methyl methanesulfonate (MMS) and cisplatin. But the mechanistic basis for the differential activation of the p21-dependent checkpoint by different DNA damaging agents is not understood. Here we report that treatment of S phase cells with MMS but not a comparable dose of UV light elicits proteasome-mediated degradation of Cdc6, the assembler of pre-replicative complexes, which allows induced p21 to bind Cdk2, thereby extending inactivation of Cdk2 and S phase arrest. Consistently, enforced expression of Cdc6 largely eliminates the prolonged S phase arrest and Cdk2 inactivation induced with MMS, whereas RNA interference-mediated Cdc6 knockdown not only prolongs such arrest and inactivation but also effectively activates the p21-dependent checkpoint in the UV-irradiated S phase cells.  相似文献   
137.
Vascular endothelial growth factor receptor 2 (VEGFR2) transmits signals of crucial importance to vasculogenesis, including proliferation, migration, and differentiation of vascular progenitor cells. Embryonic stem cell-derived VEGFR2(+) mesodermal cells differentiate into mural lineage in the presence of platelet derived growth factor (PDGF)-BB or serum but into endothelial lineage in response to VEGF-A. We found that inhibition of H-Ras function by a farnesyltransferase inhibitor or a knockdown technique results in selective suppression of VEGF-A-induced endothelial specification. Experiments with ex vivo whole-embryo culture as well as analysis of H-ras(-/-) mice also supported this conclusion. Furthermore, expression of a constitutively active H-Ras[G12V] in VEGFR2(+) progenitor cells resulted in endothelial differentiation through the extracellular signal-related kinase (Erk) pathway. Both VEGF-A and PDGF-BB activated Ras in VEGFR2(+) progenitor cells 5 min after treatment. However, VEGF-A, but not PDGF-BB, activated Ras 6-9 h after treatment, preceding the induction of endothelial markers. VEGF-A thus activates temporally distinct Ras-Erk signaling to direct endothelial specification of VEGFR2(+) vascular progenitor cells.  相似文献   
138.
The differentiation, growth, and survival of endothelial cells (ECs) are regulated by multiple signalling pathways, such as vascular endothelial growth factors (VEGFs) and angiopoietins through their receptor tyrosine kinases, VEGF receptor (VEGFR) 2 and Tie2, respectively. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family, have been implicated in the development and maintenance of vascular systems. However, their effects on EC proliferation remain to be elucidated. In the present study, we show that BMPs induce the proliferation and migration of mouse embryonic stem cell (ESC)-derived endothelial cells (MESECs) and human microvascular endothelial cells (HMECs). Addition of BMP-4 to culture induced significant proliferation and migration of both types of ECs. BMP-4 also increased the expression and phosphorylation of VEGFR2 and Tie2. These findings suggest that BMP signalling activates endothelium via activation of VEGF/VEGFR2 and Angiopoietin/Tie2 signalling.  相似文献   
139.
By incubating the mixture of three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro, T. Kondo and his colleagues in recent work reconstituted the robust circadian rhythm of the phosphorylation level of KaiC. This finding indicates that protein-protein interactions and the associated hydrolysis of ATP suffice to generate the circadian rhythm. Several theoretical models have been proposed to explain the rhythm generated in this “protein-only” system, but the clear criterion to discern different possible mechanisms was not known. In this article, we discuss a model based on two basic assumptions: the assumption of the allosteric transition of a KaiC hexamer and the assumption of the monomer exchange between KaiC hexamers. The model shows a stable rhythmic oscillation of the phosphorylation level of KaiC, which is robust against changes in concentration of Kai proteins. We show that this robustness gives a clue to distinguish different possible mechanisms. We also discuss the robustness of oscillation against the change in the system size. Behaviors of the system with the cellular or subcellular size should shed light on the role of the protein-protein interactions in in vivo circadian oscillation.  相似文献   
140.
We found that the podocarpic acid structure provides a new scaffold for chemical modulators of large-conductance calcium-activated K(+) channels (BK channels). Structure-activity analysis indicates the importance of both the arrangement (i.e., location and orientation) of the carboxylic acid functionality of ring A and the hydrophobic region of ring C for expression of BK channel-opening activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号