首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8424篇
  免费   441篇
  国内免费   6篇
  8871篇
  2022年   43篇
  2021年   73篇
  2020年   46篇
  2019年   49篇
  2018年   91篇
  2017年   84篇
  2016年   144篇
  2015年   194篇
  2014年   246篇
  2013年   819篇
  2012年   429篇
  2011年   509篇
  2010年   301篇
  2009年   274篇
  2008年   487篇
  2007年   502篇
  2006年   518篇
  2005年   524篇
  2004年   483篇
  2003年   474篇
  2002年   546篇
  2001年   105篇
  2000年   82篇
  1999年   98篇
  1998年   142篇
  1997年   113篇
  1996年   106篇
  1995年   98篇
  1994年   85篇
  1993年   123篇
  1992年   98篇
  1991年   70篇
  1990年   50篇
  1989年   65篇
  1988年   61篇
  1987年   59篇
  1986年   48篇
  1985年   52篇
  1984年   62篇
  1983年   39篇
  1982年   74篇
  1981年   56篇
  1980年   58篇
  1979年   29篇
  1978年   39篇
  1977年   26篇
  1976年   35篇
  1974年   20篇
  1973年   24篇
  1972年   20篇
排序方式: 共有8871条查询结果,搜索用时 15 毫秒
81.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   

82.
The habitat and movements of a Pacific bluefin tuna were investigated by reanalyzing archival tag data with sea surface temperature data. During its trans-Pacific migration to the eastern Pacific, the fish took a direct path and primarily utilized waters, in the Subarctic Frontal Zone (SFZ). Mean ambient temperature during the trans-Pacific migration was 14.5 ± 2.9 (°C ± SD), which is significantly colder than the waters typically inhabited by bluefin tuna in their primary feeding grounds in the western and eastern Pacific (17.6 ± 2.1). The fish moved rapidly through the colder water, and the heat produced during swimming and the thermoconservation ability of bluefin tuna likely enabled it to migrate through the cold waters of the SFZ.  相似文献   
83.
The biological degradation of 2,2-bis(4-hydroxyphenol)propane (1; bisphenol A, BPA), a representative endocrine disruptor, was studied with plant-cultured cells of Caragana chamlagu. An initial BPA concentration of 425 microM in an aqueous solution was degraded by C. chamlagu at 25 degrees C for 2 days in the dark, and two intermediates were then completely dissipated after 10 days.  相似文献   
84.
The dorsal ectoderm of vertebrate gastrula is first specified into anterior fate by an activation signal and posteriorized by a graded transforming signal, leading to the formation of forebrain, midbrain, hindbrain and spinal cord along the anteroposterior (A-P) axis. Transplanted non-axial mesoderm rather than axial mesoderm has an ability to transform prospective anterior neural tissue into more posterior fates in zebrafish. Wnt8 is a secreted factor that is expressed in non-axial mesoderm. To investigate whether Wnt8 is the neural posteriorizing factor that acts upon neuroectoderm, we first assigned Frizzled 8c and Frizzled 9 to be functional receptors for Wnt8. We then, transplanted non-axial mesoderm into the embryos in which Wnt8 signaling is cell-autonomously blocked by the dominant-negative form of Wnt8 receptors. Non-axial mesodermal transplants in embryos in which Wnt8 signaling is cell-autonomously blocked induced the posterior neural markers as efficiently as in wild-type embryos, suggesting that Wnt8 signaling is not required in neuroectoderm for posteriorization by non-axial mesoderm. Furthermore, Wnt8 signaling, detected by nuclear localization of beta-catenin, was not activated in the posterior neuroectoderm but confined in marginal non-axial mesoderm. Finally, ubiquitous over-expression of Wnt8 does not expand neural ectoderm of posterior character in the absence of mesoderm or Nodal-dependent co-factors. We thus conclude that other factors from non-axial mesoderm may be required for patterning neuroectoderm along the A-P axis.  相似文献   
85.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.  相似文献   
86.
Alternative excision repair (AER) is a category of excision repair initiated by a single nick, made by an endonuclease, near the site of DNA damage, and followed by excision of the damaged DNA, repair synthesis, and ligation. The ultraviolet (UV) damage endonuclease in fungi and bacteria introduces a nick immediately 5′ to various types of UV damage and initiates its excision repair that is independent of nucleotide excision repair (NER). Endo IV-type apurinic/apyrimidinic (AP) endonucleases from Escherichia coli and yeast and human Exo III-type AP endonuclease APEX1 introduce a nick directly and immediately 5′ to various types of oxidative base damage besides the AP site, initiating excision repair. Another endonuclease, endonuclease V from bacteria to humans, binds deaminated bases and cleaves the phosphodiester bond located 1 nucleotide 3′ of the base, leading to excision repair. A single-strand break in DNA is one of the most frequent types of DNA damage within cells and is repaired efficiently. AER makes use of such repair capability of single-strand breaks, removes DNA damage, and has an important role in complementing BER and NER.NER and base excision repair (BER) are the major excision repair pathways present in almost all organisms. In NER, dual incisions are introduced, the damaged DNA between the incised sites is then removed, and DNA synthesis fills the single-stranded gap, followed by ligation. In BER, an AP site, formed by depurination or created by a base damage-specific DNA glycosylase, is recognized by an AP endonuclease that introduces a nick immediately 5′ to the AP site, followed by repair synthesis, removal of the AP site, and final ligation. Besides these two fundamental excision repair systems, investigators have found another category of excision repair—AER—an example of which is the excision repair of UV damage, initiated by an endonuclease called UV damage endonuclease (UVDE). UVDE introduces a single nick immediately 5′ to various types of UV lesions as well as other types of base damage, and this nick leads to the removal of the lesions by an AER process designated as UVDE-mediated excision repair (UVER or UVDR). Genetic analysis in Schizosaccharomyces pombe indicates that UVER provides cells with an extremely rapid removal of UV lesions, which is important for cells exposed to UV in their growing phase.Endo IV–type AP endonucleases from Escherichia coli and budding yeast and the Exo III–type human AP endonuclease APEX1 are able to introduce a nick at various types of oxidative base damage and initiate a form of excision repair that has been designated as nucleotide incision repair (NIR). Endonuclease V (ENDOV) from bacteria to humans recognizes deaminated bases, introduces a nick 1 nucleotide 3′ of the base, and leads to excision repair initiated by the nick. These endonucleases introduce a single nick near the DNA-damage site, leaving 3′-OH termini, and initiate repair of both the DNA damage and the nick. The mechanisms of AER may be similar to those of single-strand break (SSB) repair or BER except for the initial nicking process. However, how DNA damage is recognized determines the repair process within the cell. This article discusses the mechanisms and functional roles of AER. We begin with AER of UV damage, because genetic analysis has shown functional differences between this AER and NER in S. pombe.  相似文献   
87.

Background

Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. Although new triple therapy (pegylated-interferon, ribavirin, and telaprevir/boceprevir) has recently been started and is expected to achieve a sustained virologic response of more than 70% in HCV genotype 1 patients, there are several problems to be resolved, including skin rash/ageusia and advanced anemia. Thus a new type of anti-HCV drug is still needed.

Methodology/Principal Findings

Recently developed HCV drug assay systems using HCV-RNA-replicating cells (e.g., HuH-7-derived OR6 and Li23-derived ORL8) were used to evaluate the anti-HCV activity of drug candidates. During the course of the evaluation of anti-HCV candidates, we unexpectedly found that two preclinical antimalarial drugs (N-89 and its derivative N-251) showed potent anti-HCV activities at tens of nanomolar concentrations irrespective of the cell lines and HCV strains of genotype 1b. We confirmed that replication of authentic HCV-RNA was inhibited by these drugs. Interestingly, however, this anti-HCV activity did not work for JFH-1 strain of genotype 2a. We demonstrated that HCV-RNA-replicating cells were cured by treatment with only N-89. A comparative time course assay using N-89 and interferon-α demonstrated that N-89-treated ORL8 cells had more rapid anti-HCV kinetics than did interferon-α-treated cells. This anti-HCV activity was largely canceled by vitamin E. In combination with interferon-α and/or ribavirin, N-89 or N-251 exhibited a synergistic inhibitory effect.

Conclusions/Significance

We found that the preclinical antimalarial drugs N-89 and N-251 exhibited very fast and potent anti-HCV activities using cell-based HCV-RNA-replication assay systems. N-89 and N-251 may be useful as a new type of anti-HCV reagents when used singly or in combination with interferon and/or ribavirin.  相似文献   
88.
ERdj5 (also known as JPDI) is a member of PDI family conserved in higher eukaryotes. This protein possesses an N-terminal J domain and C-terminal four thioredoxin domains each having a redox active site motif. Despite the insights obtained at the cellular level on ERdj5, the role of this protein in vivo is still unclear. Here, we present a simple method to purify and identify the disulfide-linked complexes of this protein efficiently from a mouse tissue. By combining acid quenching and thiol-alkylation, we identified a number of potential redox partners of ERdj5 from the mouse epididymis. Further, we show that ERdj5 indeed interacted with two of the identified proteins via formation of intermolecular disulfide bond. Thus, this approach enabled us to detect and identify redox partners of a PDI family member from an animal tissue.  相似文献   
89.
The main component of Japanese Ho-leaf oil has been shown to be (?)-linalool (80~90%), and the following twenty minor constituents newly have been identified; methyl vinyl ketone, methyl isobutyl ketone, mesityl oxide, β-pinene, myrcene, (+)-limonene, cis- and trans-ocimene, n-hexanol, cis-3-hexenol, cis- and trans-linalool oxide, (?)-1-terpinen-4-ol, (+)-cis and (+)-trans-2,6,6-trimethyl-2-vinyl-5-hydroxytetrahydropyran, citronellol, nerol, (+)-β-selinene, (+)-tagetonol and (?)-trans-hotrienol. (+)-Tagetonol and (?)-trans-hotrienol have been demonstrated to be (+)-3,7-dimethyl-3-hydroxy-1-octen-5-one (III) and (3R)-(?)-trans-3,7-dimethyl-3-hydroxy-1,5,7-octatriene (IX), respectively.  相似文献   
90.
Nitric oxide (NO) modulates the release of various neurotransmitters, some of these are considered to be involved in neuronal plasticity that includes long-term depression in the cerebellum. To date, there have been no reports on the modulation of the exocytotic release of neurotransmitters in the cerebellar granule cells (CGCs) by NO. The aim of this study was to investigate the effects of NO on the exocytotic release of glutamate from rat CGCs. Treatment with NO-related reagents revealed that NO inhibited high-K(+)-evoked glutamate release. Clostridium botulinum type B neurotoxin (BoNT/B) attenuated the enhancement of glutamate release caused by NO synthase (NOS) inhibition; this indicates that NO acts on the high-K(+)-evoked exocytotic pathway. cGMP-related reagents did not affect the high-K(+)-evoked glutamate release. NO-related reagents did not affect Ca(2+) ionophore-induced glutamate release, suggesting that NO inhibits Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCC). Monitoring of intracellular Ca(2+) revealed that NO inhibited high-K(+)-evoked Ca(2+) entry. L-type VDCC blockers inhibited glutamate release and NO did not have an additive effect on the inhibition produced by the L-type VDCC blocker. The inhibition of the high-K(+)-evoked glutamate release by NO was abolished by a reducing reagent; this suggested that NO regulates the high-K(+)-evoked glutamate release from CGCs by redox modulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号