首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   38篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   15篇
  2014年   12篇
  2013年   20篇
  2012年   33篇
  2011年   28篇
  2010年   18篇
  2009年   12篇
  2008年   26篇
  2007年   33篇
  2006年   33篇
  2005年   28篇
  2004年   38篇
  2003年   41篇
  2002年   38篇
  2001年   14篇
  2000年   12篇
  1999年   2篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
31.
Insulin resistance is an important contributing factor in non-alcoholic fatty liver disease. AKT and mTORC1 are key components of the insulin pathway, and play a role in promoting de novo lipogenesis. However, mTORC1 hyperactivity per se does not induce steatosis in mouse livers, but instead, protects against high-fat diet induced steatosis. Here, we investigate the in vivo mechanism of steatosis-resistance secondary to mTORC1 activation, with emphasis on the role of S6K1-mediated feedback inhibition of AKT. Mice with single or double deletion of Tsc1 and/or S6k1 in a liver-specific or whole-body manner were generated to study glucose and hepatic lipid metabolism between the ages of 6–14 weeks. Following 8 weeks of high-fat diet, the Tsc1-/-;S6k1-/- mice had lower body weights but higher liver TG levels compared to that of the Tsc1-/- mice. However, the loss of S6k1 did not relieve feedback inhibition of Akt activity in the Tsc1-/- livers. To overcome Akt suppression, Pten was deleted in Tsc1-/- livers, and the resultant mice showed improved glucose tolerance compared with the Tsc1-/- mice. However, liver TG levels were significantly reduced in the Tsc1-/-;Pten-/- mice compared to the Pten-/- mice, which was restored with rapamycin. We found no correlation between liver TG and serum NEFA levels. Expression of lipogenic genes (Srebp1c, Fasn) were elevated in the Tsc1-/-;Pten-/- livers, but this was counter-balanced by an up-regulation of Cpt1a involved in fatty acid oxidation and the anti-oxidant protein, Nrf2. In summary, our in vivo models showed that mTORC1-induced resistance to steatosis was dependent on S6K1 activity, but not secondary to AKT suppression. These findings confirm that AKT and mTORC1 have opposing effects on hepatic lipid metabolism in vivo.  相似文献   
32.

Background

The filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina) produces increased cellulase expression when grown on cellulose or its derivatives as a sole carbon source. It has been believed that β-glucosidases of T. reesei not only metabolize cellobiose but also contribute in the production of inducers of cellulase gene expression by their transglycosylation activity. The cellulase hyper-producing mutant PC-3-7 developed in Japan has enhanced cellulase production ability when cellobiose is used as the inducer. The comparative genomics analysis of PC-3-7 and its parent revealed a single-nucleotide mutation within the bgl2 gene encoding intracellular β-glucosidase II (BGLII/Cel1a), giving rise to an amino acid substitution in PC-3-7, which could potentially account for the enhanced cellulase expression when these strains are cultivated on cellulose and cellobiose.

Results

To analyze the effects of the BGLII mutation in cellulase induction, we constructed both a bgl2 revertant and a disruptant. Enzymatic analysis of the transformant lysates showed that the strain expressing mutant BGLII exhibited weakened cellobiose hydrolytic activity, but produced some transglycosylation products, suggesting that the SNP in bgl2 strongly diminished cellobiase activity, but did not result in complete loss of function of BGLII. The analysis of the recombinant BGLII revealed that transglycosylation products might be oligosaccharides, composed probably of glucose linked β-1,4, β-1,3, or a mixture of both. PC-3-7 revertants of bgl2 exhibited reduced expression and inducibility of cellulase during growth on cellulose and cellobiose substrates. Furthermore, the effect of this bgl2 mutation was reproduced in the common strain QM9414 in which the transformants showed cellulase production comparable to that of PC-3-7.

Conclusion

We conclude that BGLII plays an important role in cellulase induction in T. reesei and that the bgl2 mutation in PC-3-7 brought about enhanced cellulase expression on cellobiose. The results of the investigation using PC-3-7 suggested that other mutation(s) in PC-3-7 could also contribute to cellulase induction. Further investigation is essential to unravel the mechanism responsible for cellulase induction in T. reesei.
  相似文献   
33.
Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.  相似文献   
34.
Protein-protein interactions (PPIs) play crucial roles in protein function for a variety of biological processes. Data from large-scale PPI screening has contributed to understanding the function of a large number of predicted genes from fully sequenced genomes. Here, we report the systematic identification of protein interactions for the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Using a modified high-throughput yeast two-hybrid assay, we screened 1825 genes selected primarily from (i) genes of two-component signal transducers of Synechocystis, (ii) Synechocystis genes whose homologues are conserved in the genome of Arabidopsis thaliana, and (iii) genes of unknown function on the Synechocystis chromosome. A total of 3236 independent two-hybrid interactions involving 1920 proteins (52% of the total protein coding genes) were identified and each interaction was evaluated using an interaction generality (IG) measure, as well as the general features of interacting partners. The interaction data obtained in this study should provide new insights and novel strategies for functional analyses of genes in Synechocystis, and, additionally, genes in other cyanobacteria and plant genes of cyanobacterial origin.  相似文献   
35.
Molecular Biology Reports - Hepatitis B Virus (HBV) is the most common cause of chronic liver disease worldwide. The mechanisms that regulate HBV viral replication remain poorly defined. Here, we...  相似文献   
36.
The pulmonary lymphatic vasculature plays a vital role in maintaining fluid homeostasis required for efficient gas exchange at capillary alveolar barriers and contributes to lung fluid clearance at birth. To further understanding of pulmonary lymphatic function at birth, lineage-tracing analysis of mouse lung was used. Lineage analysis confirmed that lymphatic endothelial cells (LEC) bud from extrapulmonary lymphatics and demonstrated that LEC migrate into developing lung along precise pathways. LEC cluster first in the primary bronchovascular region then along the secondary broncho-arterial regions and along veins. Small lymphatic vessels in distal lung develop from LEC that have migrated into lung mesenchyme from the extrapulmonary lymphatics. Finally, proximal and distal lymphatics remodel to form vessels with lumens in stereotypical locations. Loss of function analysis with lung-specific expression of a secreted form of the extracellular domain of vascular endothelial growth factor receptor-3 (dnR3) caused significant embryonic pulmonary lymphatic hypoplasia with fourfold reduction in distal LEC. Lung-specific expression of dnR3 did not affect blood vascular development, overall lung organogenesis or lymphatic development in other organs. Neonatal mice with pulmonary lymphatic hypoplasia developed respiratory distress with significantly increased mortality. During the transition to air breathing, lymphatic hypoplasia adversely affected fetal lung fluid clearance as determined by wet/dry weight analysis and morphometric analysis of bronchovascular cuffing and mesenchymal thickening. Surfactant synthesis was unaffected. Together, these data demonstrate that lung lymphatics develop autonomously and that pulmonary lymphatic hypoplasia is detrimental to survival of the neonate due to impaired lung fluid clearance.  相似文献   
37.
In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122-124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment.  相似文献   
38.
Psf1 (partner of sld five 1) forms a novel heterotetramer complex, GINS (Go, Ichi, Nii, and San; five, one, two, and three, respectively, in Japanese), with Sld5, Psf2, and Psf3. The formation of this complex is essential for the initiation of DNA replication in yeast and Xenopus laevis egg extracts. Although all of the components are well conserved in higher eukaryotes, the biological function in vivo is largely unknown. We originally cloned the mouse ortholog of PSF1 from a hematopoietic stem cell cDNA library and found that PSF1 is expressed in blastocysts, adult bone marrow, and testis, in which the stem cell system is active. Here we used the gene-targeting technique to determine the physiological function of PSF1 in vivo. Mice homozygous for a nonfunctional mutant of PSF1 died in utero around the time of implantation. PSF1-/- blastocysts failed to show outgrowth in culture and exhibited a cell proliferation defect. Our data clearly indicate that PSF1 is required for early embryogenesis.  相似文献   
39.
To determine potential relationships between transforming growth factor (TGF)-alpha and surfactant homeostasis, the metabolism, function, and composition of surfactant phospholipid and proteins were assessed in transgenic mice in which TGF-alpha was expressed in respiratory epithelial cells. Secretion of saturated phosphatidylcholine was decreased 40-60% by expression of TGF-alpha. Although SP-A, SP-B, and SP-C mRNA levels were unchanged by expression of TGF-alpha, SP-A and SP-B content in bronchoalveolar lavage fluid was decreased. The minimum surface tension of surfactant isolated from the transgenic mice was significantly increased. Incubation of cultured normal mice type II cells with TGF-alpha in vitro did not change secretion of surfactant phosphatidylcholine and SP-B, indicating that TGF-alpha does not directly influence surfactant secretion. Expression of a dominant negative (mutant) EGF receptor in the respiratory epithelium blocked the TGF-alpha-induced changes in lung morphology and surfactant secretion, indicating that EGF receptor signaling in distal epithelial cells was required for TGF-alpha effects on surfactant homeostasis. Because many epithelial cells were embedded in fibrotic lesions caused by TGF-alpha, changes in surfactant homeostasis may at least in part be influenced by tissue remodeling that results in decreased surfactant secretion. The number of nonembedded type II cells was decreased 30% when TGF-alpha was expressed during development and was increased threefold by TGF-alpha expression in adulthood, suggesting possible alteration of type II cells on surfactant metabolism in the adult lung. Abnormalities in surfactant function and decreased surfactant level in the airways may contribute to the pathophysiology induced by TGF-alpha in both the developing and adult lung.  相似文献   
40.
It is not always easy to apply microarray technology to small numbers of cells because of the difficulty in selectively isolating mRNA from such cells. We report here the preparation of mRNA from ciliated sensory neurons of Caenorhabditis elegans using the mRNA-tagging method, in which poly(A) RNA was co-immunoprecipitated with an epitope-tagged poly(A)-binding protein specifically expressed in sensory neurons. Subsequent cDNA microarray analyses led to the identification of a panel of sensory neuron-expressed genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号