首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   38篇
  国内免费   1篇
  500篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   15篇
  2014年   12篇
  2013年   20篇
  2012年   33篇
  2011年   28篇
  2010年   18篇
  2009年   12篇
  2008年   26篇
  2007年   33篇
  2006年   33篇
  2005年   28篇
  2004年   38篇
  2003年   41篇
  2002年   38篇
  2001年   14篇
  2000年   12篇
  1999年   2篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有500条查询结果,搜索用时 0 毫秒
231.
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.  相似文献   
232.
233.
The genetic population structure of the Japanese freshwater goby Gymnogobius castaneus was investigated on the basis of analysis of gene products of 19 allozyme loci. Two diverged groups were detected, one being endemic to the Kanto region and the other extensively distributed in eastern Japan. These two groups were distinguishable from each other by a complete allelic substitution in one locus, G3PDH*. In the Kanto region, both groups were distributed in the same river basin, being distinguishable by a complete allelic substitution in four loci, G3PDH*, GPI-2*, PGDH*, and PGM*. These results suggest that these two groups showed reproductive isolation.  相似文献   
234.
235.
9-(5',5'-Difluoro-5'-phosphonopentyl)guanine (DFPP-G) and its hypoxanthine analogue (DFPP-H) were modified by introducing a methyl group to all possible positions of the linker connecting a purine and difluoromethylenephosphonic acid moiety to evaluate the effects of the methyl group on inhibition against purine nucleoside phosphorylase. The methyl group on the linker affected the inhibition in a positional-dependent manner. Inhibitory potency of alpha-methyl and beta-methyl-substituted analogues of DFPP-H increased by about 600- to 1000-fold upon converting to cyclopropane nucleotide analogue (+/-)-4.  相似文献   
236.
The endoplasmic reticulum (ER) has a strict protein quality control system. Misfolded proteins generated in the ER are degraded by the ER-associated degradation (ERAD). Yeast Mnl1p consists of an N-terminal mannosidase homology domain and a less conserved C-terminal domain and facilitates the ERAD of glycoproteins. We found that Mnl1p is an ER luminal protein with a cleavable signal sequence and stably interacts with a protein-disulfide isomerase (PDI). Analyses of a series of Mnl1p mutants revealed that interactions between the C-terminal domain of Mnl1p and PDI, which include an intermolecular disulfide bond, are essential for subsequent introduction of a disulfide bond into the mannosidase homology domain of Mnl1p by PDI. This disulfide bond is essential for the ERAD activity of Mnl1p and in turn stabilizes the prolonged association of PDI with Mnl1p. Close interdependence between Mnl1p and PDI suggests that these two proteins form a functional unit in the ERAD pathway.The endoplasmic reticulum (ER)2 is the first organelle in the secretory pathway of eukaryotic cells and provides an optimum environment for maturation of newly synthesized secretory and membrane proteins. Protein folding/assembly in the ER is aided by molecular chaperones and folding enzymes. Molecular chaperones in the ER assist folding of newly synthesized proteins and prevent them from premature misfolding and/or aggregate formation (1, 2). Protein folding in the ER is often associated with formation of disulfide bonds, which contribute to stabilization of native, functional states of proteins. Disulfide bond formation could be a rate-limiting step of protein folding both in vitro and in vivo (3, 4), and the ER has a set of folding enzymes including protein-disulfide isomerase (PDI) and its homologs that catalyze disulfide bond formation (5, 6).In parallel, protein folding/assembly in the ER relies on the inherent failsafe mechanism, i.e. the ER quality control system, to ensure that only correctly folded and/or assembled proteins can exit the ER. Misfolded or aberrant proteins are retained in the ER for refolding by ER-resident chaperones, whereas terminally misfolded proteins are degraded by the mechanism known as ER-associated degradation (ERAD). The ERAD consists of recognition and processing of aberrant substrate proteins, retrotranslocation across the ER membrane, and subsequent proteasome-dependent degradation in the cytosol. More than 20 different components have been identified to be involved in this process in yeast and mammals (7).The majority of proteins synthesized in the ER are glycoproteins, in which N-linked glycans are not only important for folding but also crucial for their ERAD if they fail in folding. Specifically, trimming of one or more mannose residues of Man9GlcNAc2 oligosaccharide and recognition of the modified mannose moiety represent a key step for selection of terminally misfolded proteins for disposal (8). A mannosidase I-like protein, Mnl1p/Htm1p (yeast), and EDEM (mammals, ER degradation enhancing α-mannosidase-like protein) were identified as candidates for lectins that recognize ERAD substrates with modified mannose moieties (911). Both Mnl1p and EDEM contain an N-terminal mannosidase homology domain (MHD), which lacks cysteine residues conserved among α1,2-mannosidase family members and is proposed to function in recognition of mannose-trimmed carbohydrate chains (supplemental Fig. S1). However, whether Mnl1p or EDEM indeed functions as an ERAD-substrate-binding lectin or has a mannosidase activity is still in debate (1115), and Yos9p was suggested to take the role of ERAD-substrate binding lectin (14, 1618). Mnl1p, but not EDEM, has a large C-terminal extension, which does not show any homology to known functional domains and is conserved only among fungal Mnl1p homologs (supplemental Fig. S1).After recognition of the modified mannose signal for degradation, aberrant proteins are maintained or converted to be retrotranslocation competent by ER chaperones including BiP (19). PDI was also indicated to be involved in these steps in the ERAD by, for example, its possible chaperone-like functions (2023). The yeast PDI, Pdi1p, contains four thioredoxin-like domains, two of which have a CGHC motif as active sites, followed by a C-terminal extension containing the ER retention signal. During its catalytic cycle, PDI transiently forms a mixed disulfide intermediate with its substrate through an intermolecular disulfide bond between the cysteine residues of the active site of PDI and the substrate molecule.Here we report identification of PDI as an Mnl1p-interacting protein. Stable interactions between the C-terminal domain of Mnl1p and PDI involve intermolecular disulfide bonds. Stably interacting PDI is required for formation of the functionally essential intramolecular disulfide bond in the MHD of Mnl1p, which in turn stabilizes and prolongs the Mnl1p-PDI interactions. Possible roles for those stable interactions between Mnl1p and PDI in the ERAD will be discussed.  相似文献   
237.
238.
239.
Imprinted genes in mammals show monoallelic expression dependent on parental origin and are often associated with differentially methylated regions (DMRs). There are two classes of DMR: primary DMRs acquire gamete-specific methylation in either spermatogenesis or oogenesis and maintain the allelic methylation differences throughout development; secondary DMRs establish differential methylation patterns after fertilization. Targeted disruption of some primary DMRs showed that they dictate the allelic expression of nearby imprinted genes and the establishment of the allelic methylation of secondary DMRs. However, how primary DMRs are recognized by the imprinting machinery is unknown. As a step toward elucidating the sequence features of the primary DMRs, we have determined the extents and boundaries of 15 primary mouse DMRs (including 12 maternally methylated and three paternally methylated DMRs) in 12.5-dpc embryos by bisulfite sequencing. We found that the average size of the DMRs was 3.2 kb and that their average G+C content was 54%. Dinucleotide content analysis of the DMR sequences revealed that, although they are generally CpG rich, the paternally methylated DMRs contain less CpGs than the maternally methylated DMRs. Our findings provide a basis for the further characterization of DMRs.  相似文献   
240.
A ‘metal-free’ chlorophyll (Chl) a, pheophytin (Phe) a, functions as the primary electron acceptor in PS II. On the basis of Phe a/PS II = 2, Phe a content is postulated as an index for estimation of the stoichiometry of pigments and photosystems. We found Phe a in a Chl d-dominant cyanobacterium Acaryochloris marina, whereas Phe d was absent. The minimum Chl a:Phe a ratio was 2:2, indicating that the primary electron donor is Chl a, accessory is Chl d, and the primary electron acceptor is Phe a in PS II of A. marina. Chl d was artificially formed by the treatment of Chl a with papain in aqueous organic solvents. Further, we will raise a key question on the mechanisms of water oxidation in PS II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号