首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1756篇
  免费   98篇
  1854篇
  2023年   3篇
  2022年   13篇
  2021年   28篇
  2020年   5篇
  2019年   24篇
  2018年   18篇
  2017年   14篇
  2016年   33篇
  2015年   52篇
  2014年   78篇
  2013年   83篇
  2012年   122篇
  2011年   110篇
  2010年   64篇
  2009年   56篇
  2008年   135篇
  2007年   108篇
  2006年   102篇
  2005年   103篇
  2004年   128篇
  2003年   119篇
  2002年   130篇
  2001年   24篇
  2000年   14篇
  1999年   20篇
  1998年   26篇
  1997年   15篇
  1996年   13篇
  1995年   17篇
  1994年   15篇
  1993年   15篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   15篇
  1988年   16篇
  1987年   9篇
  1986年   4篇
  1985年   9篇
  1984年   6篇
  1983年   13篇
  1982年   13篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1854条查询结果,搜索用时 0 毫秒
81.
We cloned a new cysteine proteinase of wheat seed origin, which hydrolyzed the storage protein gliadin almost specifically, and was named gliadain. Gliadain mRNA was expressed 1 day after the start of seed imbibition, and showed a gradual increase thereafter. Gliadain expression was suppressed when uniconazol, a gibberellin synthesis inhibitor, was added to germinating seeds. Histochemical detection with anti-gliadain serum indicated that gliadain was present in the aleurone layer and also that its expression intensity increased in sites nearer the embryo. The enzymological characteristics of gliadain were investigated using recombinant glutathione S-transferase (GST)-progliadain fusion protein produced in Escherichia coli. The GST-progliadain almost specifically digested gliadin into low molecular mass peptides. These results indicate that gliadain is produced via gibberellin-mediated gene activation in aleurone cells and secreted into the endosperm to digest its storage proteins. Enzymologically, the GST-progliadain hydrolyzed benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin (Z-Phe-Arg-NH(2)-Mec) at K(m) = 9.5 microm, which is equivalent to the K(m) value for hydrolysis of this substrate by cathepsin L. Hydrolysis was inhibited by two wheat cystatins, WC1 and WC4, with IC(50) values of 1.7 x 10(-8) and 5.0 x 10(-8) m, respectively. These values are comparable with those found for GST-progliadain inhibition by E-64 and egg-white cystatin, and are consistent with the possibility that, in germinating wheat seeds, gliadain is under the control of intrinsic cystatins.  相似文献   
82.
Neurochemical Research - Spinal muscular atrophy (SMA) is an inherited disease characterized by progressive motor neuron death and subsequent muscle weakness and is caused by deletion or mutation...  相似文献   
83.
Journal of Plant Research - Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to...  相似文献   
84.
85.
Transgene expression in the mammary glands of newborn rats was studied to establish an early selection system for transgenic animals producing exogenous proteins in their milk during lactation. A fusion gene composed of the bovine alpha S1 casein gene promoter and the human growth hormone gene was microinjected into rat embryos. Transgenic lines that produced human growth hormone in their milk were established and used in this study. Immediately after birth, and without any hormone treatment, human growth hormone was found in the extracts of mammary glands from both male and female rats derived from the line secreting human growth hormone in their milk. The expression of the transgene in mammary glands of newborn rats was also detected by the presence of human growth hormone mRNA. Nontransgenic newborn rats did not express the human growth hormone gene in their mammary glands, while the mRNA for rat alpha casein, an endogenous milk protein, was found in all mammary glands from both transgenic and nontransgenic neonates. These results show that analyzing the expression of transgenes in the mammary glands of neonates is a valuable tool to select the desired transgenic animals and to shorten the selection schedules establishing the transgenic animals. © 1996 Wiley-Liss, Inc.  相似文献   
86.
Abstract Enrichment cultures from marine sediments mineralized benzene while using sulfate as the terminal electron acceptor. Parallel cultures using river marsh sediment displayed no activity. Mineralization was confirmed by release of 14CO2 from radiolabeled benzene. The dependence on sulfate reduction was demonstrated by stoichiometric balances and the use of specific inhibitors. This work supports recent observations that anaerobic benzene degradation takes place coupled to sulfate reduction.  相似文献   
87.
88.
Ohmuro J  Mogami Y  Baba SA 《Zoological science》2004,21(11):1099-1108
Transition from immotile to motile flagella may involve a series of states, in which some of regulatory mechanisms underlying normal flagellar movement are working with others being still suppressed. To address ourselves to the study of starting transients of flagella, we analyzed flagellar movement of sea urchin sperm whose motility initiation had been retarded in an experimental solution, so that we could capture the instance at which individual spermatozoa began their flagellar beating. Initially straight and immotile flagella began to shiver at low amplitude, then propagated exclusively the principal bend (P bend), and finally started stable flagellar beating. The site of generation of the P bend in the P-bend propagating stage varied in position in the basal region up to 10 microm from the base, indicating that the ability of autonomous bend generation is not exclusively possessed by the very basal region but can be unmasked throughout a wider region when the reverse bend (R bend) is suppressed. The rate of change in the shear angle, the curvature of the R bend and the frequency and regularity of beating substantially increased upon transition from P-bend propagating to full-beating, while the propagation velocity of bends remained unchanged. These findings indicate that artificially delayed motility initiation may accompany sequential modification of the motile system and that mechanisms underlying flagellar motility can be analyzed separately under experimentally retarded conditions.  相似文献   
89.
Medaka is an attractive model to study epimorphic regeneration. The fins have remarkable regenerative capacity and are replaced about 14 days after amputation. The formation of blastema, a mass of undifferentiated cells, is essential for regeneration; however, the molecular mechanisms are incompletely defined. To identify the genes required for fin regeneration, especially for blastema formation, we constructed cDNA libraries from fin regenerates at 3 days postamputation and 10 days postamputation. A total of 16,866 expression sequence tags (ESTs) were sequenced and subjected to BLASTX analysis. The result revealed that about 60% of them showed strong matches to previously identified proteins, and major signaling molecules related to development, including FGF, BMP, Wnt, Notch/Delta, and Ephrin/Eph signaling pathways were isolated. To identify novel genes that showed specific expression during fin regeneration, cDNA microarray was generated based on 2900 independent ESTs from each library which had no sequence similarity to known proteins. We obtained 6 candidate genes associated with blastema formation by gene expression pattern screening in competitive hybridization analyses and in situ hybridization. Olrfe16d23 and olrfe14k04 were expressed only in early regenerating stages when blastema formation was induced. The expression of olrf5n23, which encodes a novel signal peptide, was detected in wound epidermis throughout regeneration. Olrfe23l22, olrfe20n22, and olrfe24i02 were expressed notably in the blastema region. Our study has thus identified the gene expression profiles and some novel candidate genes to facilitate elucidation of the molecular mechanisms of fin regeneration.  相似文献   
90.
Ym is one of the chitinase family proteins, which are widely distributed in mammalian bodies and can bind glycosaminoglycans such as heparin/heparan sulfate. Ym1 is a macrophage protein produced in parasitic infections, while its isoform, Ym2, is upregulated in lung under allergic conditions. In the present study, we revealed the distinct cellular expression of Ym1 and Ym2 in normal mice by in situ hybridization and immunohistochemistry. Ym1 was principally expressed in the lung, spleen, and bone marrow, while Ym2 was found in the stomach. Ym1-expressing cells in the lung were alveolar macrophages, and the immunoreactivity for Ym1 was localized in rough endoplasmic reticulum. In the spleen, Ym1-expressing cells gathered in the red pulp and were electron microscopically identified as immature neutrophils. In the bone marrow, immature neutrophils were intensely immunoreactive, but lost this immunoreactivity with maturation. Moreover, needle-shaped crystals in the cytoplasm of macrophages, which formed erythroblastic islands, also showed intense Ym1 immunoreactivity. Ym2 expression was restricted to the stratified squamous epithelium in the junctional region between forestomach and glandular stomach. The function of Ym1 and Ym2 is still unclear; however, the distinct cellular localization under normal conditions suggests their important roles in hematopoiesis, tissue remodeling, or immune responses as an endogenous lectin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号