首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10643篇
  免费   900篇
  国内免费   2篇
  11545篇
  2022年   62篇
  2021年   115篇
  2020年   68篇
  2019年   87篇
  2018年   129篇
  2017年   104篇
  2016年   176篇
  2015年   296篇
  2014年   332篇
  2013年   587篇
  2012年   547篇
  2011年   564篇
  2010年   340篇
  2009年   303篇
  2008年   465篇
  2007年   510篇
  2006年   465篇
  2005年   489篇
  2004年   479篇
  2003年   437篇
  2002年   447篇
  2001年   371篇
  2000年   408篇
  1999年   376篇
  1998年   128篇
  1997年   104篇
  1996年   115篇
  1995年   108篇
  1994年   90篇
  1993年   120篇
  1992年   292篇
  1991年   198篇
  1990年   209篇
  1989年   219篇
  1988年   316篇
  1987年   185篇
  1986年   159篇
  1985年   139篇
  1984年   112篇
  1983年   87篇
  1982年   56篇
  1981年   61篇
  1979年   79篇
  1978年   61篇
  1977年   45篇
  1976年   44篇
  1975年   52篇
  1974年   61篇
  1973年   44篇
  1972年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
We demonstrated previously that the integral membrane protein giantin has the Golgi localization signal at the COOH-terminal cytoplasmic domain (Misumi, Y., Sohda, M., Tashiro, A., Sato, H., and Ikehara, Y. (2001) J. Biol. Chem. 276, 6867-6873). In the present study, using this domain as bait in the yeast two-hybrid screening system, we identified a novel protein interacting with giantin. The 3.6-kilobase mRNA encoding a 528-amino acid protein of 60 kDa designated GCP60 was ubiquitously expressed and was especially abundant in the testis and ovary. Immunofluorescence and immunoelectron microscopy confirmed that GCP60 was co-localized with giantin in the Golgi complex. GCP60 was found to be a peripheral protein associated with the Golgi membrane, where a COOH-terminal domain of GCP60 interacts with the COOH-terminal cytoplasmic domain of giantin. Overexpression of the COOH-terminal domain of GCP60 caused disassembly of the Golgi structure and blocked protein transport from the endoplasmic reticulum to the Golgi. Taken together, these results suggest that GCP60 is involved in the maintenance of the Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and the Golgi.  相似文献   
942.
The tyramide signal amplification (TSA) technique has been shown to detect scarce tissue antigens in light and electron microscopy. In this study we applied the TSA technique at the electron microscopic level to pre-embedding immunocytochemistry. This protocol was compared to the non-amplified protocol. With the TSA protocol, the labeling of GM130, a cis-Golgi matrix protein, was tested in a cell line and found to be highly sensitive and more enhanced than that with the simple protocol. Moreover, the gold particles were well localized to the cis-side of the Golgi apparatus in both the TSA and the simple protocol.  相似文献   
943.
UDP-(1)fructose was synthesized essentially by the method of Michelson or Roseman et al. The product obtained was much more stable to acid than UDP-fructose isolated from Jerusalem artichoke tubers by Umemura et al.7) and UDP-glucose. Hydrolysis time curves of UDP-(1)fructose and fructose-1-phosphate in 0.01N HGl and 0.1N HCl both at 100°C are presented. It was concluded from these curves that UDP-(1)fructose was first hydrolyzed into UMP and fructose-1-phosphate, and then fructose-1-phosphate was hydrolyzed more slowly into free fructose and inorganic phosphate.  相似文献   
944.
Platinum nanoparticles have industrial application, for example in catalysis, and are used in consumer products such as cosmetics and supplements. Therefore, among the many nanoparticles, platinum is one of the more accessible nanoparticles for consumers. Most platinum nanoparticles that are used in cosmetics and supplements which have an anti-oxidant activity are modified particles. However, the cellular influences of pristine platinum nanoparticles are still unclear, although it has been reported that platinum nanoparticles induce oxidative stress. In this study, we investigated the cellular influences induced by pure pristine platinum nanoparticles. Platinum nanoparticles of 100% purity were dispersed in a cell culture medium and stable medium dispersion was obtained. The platinum nanoparticle medium dispersion was applied to two kinds of cultured cells, A549 and HaCaT cells, and the cellular influences were examined. Cell viability (MTT assay), cell proliferation (clonogenic assay), apoptosis induction (caspase-3 activity), intracellular ROS level (DCFH assay), and lipid peroxidation level (DPPP assay) were measured as markers of cellular influences. Transmission electron microscope observation showed cellular uptake of platinum nanoparticles. However, the platinum nanoparticles did not drive any markers. It is known that some metal oxide nanoparticles such as NiO and CuO show severe cytotoxicity via metal ion release. Compared with these toxic nanoparticles, the platinum nanoparticles used in this study did not release platinum ions into the culture media. These results suggest that the physically and chemically inactive cellular influences of platinum nanoparticles are small.  相似文献   
945.
Water and dissolved nitrogen flows through the hyporheic zone of a 3rd-order mountain stream in Hokkaido, northern Japan were measured during a small storm in August 1997. A network of wells was established to measure water table elevations and to collect water samples to analyze dissolved nitrogen concentrations. Hydraulic conductivity and the depth to bedrock were surveyed. We parameterized the groundwater flow model, MODFLOW, to quantify subsurface flows of both stream water and soil water through the hyporheic zone. MODFLOW simulations suggest that soil water inflow from the adjacent hill slope increased by 1.7-fold during a small storm. Dissolved organic nitrogen (DON) and ammonium (NH 4 + ) in soil water from the hill slope were the dominant nitrogen inputs to the riparian zone. DON was consumed via mineralization to NH 4 + in the hyporheic zone. NH 4 + was the dominant nitrogen species in the subsurface, and showed a net release during both base and storm flow. Nitrate appeared to be lost to denitrification or immobilized by microorganisms and/or vegetation in the riparian zone. Our results indicated that the riparian and hyporheic system was a net source of NH 4 + to the stream.  相似文献   
946.
Glycine and GABA are the primary inhibitory neurotransmitters in the spinal cord and brain stem, with glycine exerting its physiological roles by activating strychnine-sensitive ionotropic receptors. Glycine receptors are also expressed in the brain, including the cortex and hippocampus, but their physiological roles and pharmacological properties are largely unknown. Here, we report the pharmacological properties of functional glycine receptors in acutely isolated rat CA3 neurons using conventional whole-cell patch clamp techniques. Both glycine and taurine, which are endogenous agonists of glycine receptors, elicited Cl(-) currents in a concentration-dependent manner. The glycine-induced current (I(Gly)) was inhibited by strychnine, picrotoxin or cyclothiazide in a concentration-dependent manner. At lower concentrations (0.01-1 microM), ICS-205,930 potentiated I(Gly), but at higher concentrations (>10 microM) it inhibited I(Gly). These pharmacological properties strongly suggest that CA3 neurons express functional strychnine-sensitive glycine receptors containing alpha2 subunits. Furthermore, at lower concentrations (1-30 microM), Zn(2+) potentiated I(Gly), but at higher concentrations (>100 microM) it inhibited I(Gly). Considering that Zn(2+) is synaptically co-released with glutamate from mossy fiber terminals that make excitatory synapses onto CA3 neurons, these results suggest that endogenous Zn(2+) modulation of these glycine receptors may have an important role in the excitability of CA3 neurons.  相似文献   
947.
948.
Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. We recently reported that amyloid-β peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics.  相似文献   
949.
Embryonic stem cells are envisioned as a viable source of pluripotent cells for use in regenerative medicine applications when donor tissue is not available. However, most current harvest techniques for embryonic stem cells require the destruction of embryos, which has led to significant political and ethical limitations on their usage. Parthenogenesis, the process by which an egg can develop into an embryo in the absence of sperm, may be a potential source of embryonic stem cells that may avoid some of the political and ethical concerns surrounding embryonic stem cells. Here we provide the technical aspects of embryonic stem cell isolation and expansion from the parthenogenetic activation of oocytes. These cells were characterized for their stem-cell properties. In addition, these cells were induced to differentiate to the myogenic, osteogenic, adipogenic, and endothelial lineages, and were able to form muscle-like and bony-like tissue in vivo. Furthermore, parthenogenetic stem cells were able to integrate into injured muscle tissue. Together, these results demonstrate that parthenogenetic stem cells can be successfully isolated and utilized for various tissue engineering applications.  相似文献   
950.
Hypoglycosylation is a common characteristic of dystroglycanopathy, which is a group of congenital muscular dystrophies. More than ten genes have been implicated in α-dystroglycanopathies that are associated with the defect in the O-mannosylation pathway. One such gene is GTDC2, which was recently reported to encode O-mannose β-1,4-N-acetylglucosaminyltransferase. Here we show that GTDC2 generates CTD110.6 antibody-reactive N-acetylglucosamine (GlcNAc) epitopes on the O-mannosylated α-dystroglycan (α-DG). Using the antibody, we show that mutations of GTDC2 identified in Walker–Warburg syndrome and alanine-substitution of conserved residues between GTDC2 and EGF domain O-GlcNAc transferase resulted in decreased glycosylation. Moreover, GTDC2-modified GlcNAc epitopes are localized in the endoplasmic reticulum (ER). These data suggested that GTDC2 is a novel glycosyltransferase catalyzing GlcNAcylation of O-mannosylated α-DG in the ER. CTD110.6 antibody may be useful to detect a specific form of GlcNAcylated O-mannose and to analyze defective O-glycosylation in α-dystroglycanopathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号