Substances known to alter cyclic nucleotide levels in cells were applied to the isolated toad retina and effects on rod electrical and adaptive behavior were studied. The retina was continually superfused in control ringer’s or ringer’s containing one or a combination of drugs, and rod activity was recorded intracellularly. Superfusion with cGMP, Bu(2)GMP, isobutylmethylxanthine (IBMX; a phosphodiesterase inhibitor), or PGF(2α) (a prostaglandin) caused effects in rods that closely match those observed when extracellular Ca(2+) levels were lowered. For example, short exposures (up to 6 min) of the retina to these substances caused depolarization of the membrane potential, increase in response amplitudes, and some changes in waveform; but under dark-adapted or partially light-adapted conditions receptor sensitivity was virtually unaffected. That is, the position of the V-log I curve on the intensity axis was determined by the prevailing light level, not by drug level. These drugs, like lowered extracellular Ca(2+), also decreased the period of receptor saturation after a bright-adapting flash, resulting in an acceleration of the onset of membrane and sensitivity recovery during dark adaptation.
Long-term (6-15 min) exposure of a dark-adapted retina to 5 mM IBMX or a combination of IBMX and cGMP caused a loss of response amplitude and a desensitization of the rods that was similar to that observed in rods after a long-term low Ca(2+) (10(-9)M) treatment. Application of high (3.2 mM) Ca(2+) to the retina blocked the effects of applied Bu(2)cGMP. PGE(1) superfusion mimicked the effects of increasing extracellular Ca(2+). The results show that increased cGMP and lowered Ca(2+) produce similar alterations in the electrical activity of rods. These findings suggest that Ca(2+) and cGMP are interrelated messengers. We speculate that low Ca(2+) may lead to increased intracellular cGMP, and/or that applied cGMP, and/or that applied cGMP may lower cytosol Ca(2+), perhaps by stimulating Ca(2+)- ATPase pumps in the outer segment.
The relation between net dimethyl sulfide (DMS) production and changes in near surface (0-5 mm) oxygen concentrations in a sea grass (Zostera noltii Hornem)-covered intertidal sediment ecosystem was examined during a diel cycle. Sediment covered with Zostera was found to be more oxygenated than uncovered sediment during the period of photosynthesis. This phenomenon was probably caused by radial oxygen loss of the Zostera root-rhizome system. The population sizes of the three functional groups of microbes mainly responsible for the concentration of DMS, the dimethylsulfoniopropionate (DMSP)-demethylating, DMSP-cleaving and DMS-oxidizing bacteria, were quantified by most probable number (MPN) methodologies. Sediments with Zostera supported substantially higher populations of both aerobic (149x10(6) cm(-3) DMSP-utilizing and 0.4x10(6) cm(-3) DMS-oxidizing) and anaerobic (43x10(6) cm(-3) DMSP-utilizing and 0.4x10(6) cm(-3) DMS-oxidizing) microorganisms than sediments without Zostera (DMSP-utilizing aerobes and anaerobes both 2x10(6) cm(-3) and DMS-oxidizing aerobes and anaerobes both 0.2x10(6) cm(-3)). Experiments conducted with sediment cores and sediment slurries suggested that the net production of DMS in these sediments was significantly lower during oxic periods than during anoxic periods. Intact sediment cores with and without Zostera produced DMS when incubated under anoxic/dark conditions (97.0 and 53.6 nmol DMS m(-2) h(-1), respectively), while oxic/light-incubated cores did not produce detectable amounts of DMS. In addition, kinetic parameter values (V(max) and K(m)) for DMSP degradation in cell suspensions of isolated DMSP-demethylating and DMSP-cleaving bacteria were measured and compared to documented values for other strains. Both V(max) and K(m) values for DMSP-demethylating organisms were found to be relatively low (14.4-20.1 nmol DMSP mg protein(-1) min(-1) and 4.1-15.5 μM, respectively) while these parameter values varied widely in the group of the DMSP-cleaving organisms (6.7-1000 nmol DMSP mg protein(-1) min(-1) and 2-2000 μM, respectively). It was hypothesized that a diel rhythm in DMS emission occurred, with a relatively low net production during the day and a high net production during the night. Environmental changes which result in increased anoxic conditions in coastal sediments, such as an increase in eutrophication, may therefore result in increased atmospheric DMS emission rates. 相似文献
This paper outlines a PCR-based approach for population genetics that
offers several advantages over conventional Southern blotting methods for
revealing restriction-fragment-length polymorphisms (RFLPs) in nuclear DNA.
Primers are constructed from clones isolated from a nuclear DNA library,
and these primers subsequently are employed in in vitro syntheses of
homologous regions. Amplified products are then screened directly for RFLPs
by using gel-staining procedures. Population applications for this
PCR-based approach, including potential strengths and weaknesses, are
exemplified by two RFLP data sets generated to estimate (a) male-mediated
gene flow in the green turtle (Chelonia mydas) and (b) geographic
population genetic structure in the American oyster (Crassostrea
virginica). Restriction assays of amplified products from 14 or 15
independent primer pairs in each species revealed polymorphisms at several
loci that proved highly informative in the population genetic analyses. In
general, the Mendelian polymorphisms produced by this PCR-based approach
will provide useful genetic markers for population studies, particularly in
situations where simpler and less expensive allozyme methods have failed,
for whatever reason, to provide adequate information.
相似文献
The catalytic subunit of the H(+)-ATPase from brush-border membranes of porcine renal proximal tubules was labeled with the hydrophobic SH-group reagent 10-N-(bromoacetyl)amino-1-decyl-beta-glucopyranoside (BADG) which irreversibly inhibits proton pump activity in the absence but not in the presence of ATP. The labeled protein was purified and digested with proteinases. After isolation and sequencing of proteolytic peptides two BADG-labeled cysteines were identified. The amino acid sequences of the obtained proteolytic peptides were homologous to the catalytic subunit of V-ATPases. From mRNA of porcine kidney cortex a catalytic H(+)-ATPase subunit was cloned. 181 of the 183 amino acids which overlap in the sequence derived from the cDNA and the proteolytic peptides were identical, and the two deviations are due to single base exchanges. A comparison of the amino acid sequence derived from the cloned cDNA with sequences of catalytic H(+)-ATPase subunits communicated by other laboratories revealed 98%, 96% and 94% identity with sequences from bovine adrenal medulla, from bovine kidney medulla and from clathrin-coated vesicles of bovine brain. Between 64% and 69% identity was obtained with sequences from fungi and plants. The data show that the catalytic subunit of V-ATPases is highly conserved during evolution. They indicate organ and species specificity in mammalians. 相似文献