首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   16篇
  234篇
  2023年   3篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   16篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   10篇
  2006年   12篇
  2005年   16篇
  2004年   16篇
  2003年   10篇
  2002年   6篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1966年   4篇
排序方式: 共有234条查询结果,搜索用时 0 毫秒
101.
Acro-cardio-facial syndrome (ACFS) is a rare genetic disorder characterized by split-hand/split-foot malformation (SHFM), facial anomalies, cleft lip/palate, congenital heart defect (CHD), genital anomalies, and mental retardation. Up to now, 9 patients have been described, and most of the reported cases were not surviving the first days or months of age. The spectrum of defects occurring in ACFS is wide, and both interindividual variability and clinical differences among sibs have been reported. The diagnosis is based on clinical criteria, since the genetic mechanism underlying ACFS is still unknown. The differential diagnosis includes other disorders with ectrodactyly, and clefting conditions associated with genital anomalies and heart defects. An autosomal recessive pattern of inheritance has been suggested, based on parental consanguinity and disease's recurrence in sibs in some families. The more appropriate recurrence risk of transmitting the disease for the parents of an affected child seems to be up to one in four. Management of affected patients includes treatment of cardiac, respiratory, and feeding problems by neonatal pediatricians and other specialists. Prognosis of ACFS is poor.  相似文献   
102.

Objective

A genomic region near the CDKN2A locus, encoding p16INK4a, has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16INK4a results in decreased inflammatory signaling in murine macrophages and that p16INK4a influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16INK4a on glucose tolerance and atherosclerosis in mice.

Methods and Results

Bone marrow p16INK4a-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16INK4a-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16INK4a-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16INK4a-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages.

Conclusion

Bone marrow p16INK4a-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.  相似文献   
103.
It has been suggested that biogeographic historical legacies in plant diversity may influence ecosystem functioning. This is expected because of known diversity effects on ecosystem functions, and impacts of historical events such as past climatic changes on plant diversity. However, empirical evidence for a link between biogeographic history and present‐day ecosystem functioning is still limited. Here, we explored the relationships between Late‐Quaternary climate instability, species‐pool size, local species and functional diversity, and the net primary productivity (NPP) of Northern Hemisphere forests using structural equation modelling. Our study confirms that past climate instability has negative effects on plant functional diversity and through that on NPP, after controlling for present‐day climate, soil conditions, stand biomass and age. We conclude that global models of terrestrial plant productivity need to consider the biogeographical context to improve predictions of plant productivity and feedbacks with the climate system.  相似文献   
104.

Objectives

To determine whether or not the antioxidants N-acetylcysteine (NAC) and allopurinol (ALP) confer synergistic cardioprotection against myocardial ischemia/reperfusion (MI/R) injury by stabilizing hypoxia inducible factor 1α (HIF-1α)/heme oxygenase 1 (HO-1) signaling in diabetic myocardium.

Methods

Control or diabetic [streptozotocin (STZ)-induced] Sprague Dawley rats received vehicle or NAC, ALP or their combination for four weeks starting one week after STZ injection. The animals were then subjected to thirty minutes of coronary artery occlusion followed by two hours reperfusion in the absence or presence of the selective HO-1 inhibitor, tin protoporphyrin-IX (SnPP-IX) or the HIF-1α inhibitor 2-Methoxyestradiol (2ME2). Cardiomyocytes exposed to high glucose were subjected to hypoxia/re-oxygenation in the presence or absence of HIF-1α and HO-1 achieved by gene knock-down with related siRNAs.

Results

Myocardial and plasma levels of 15-F2t-isoprostane, an index of oxidative stress, were significantly increased in diabetic rats while cardiac HO-1 protein and activity were reduced; this was accompanied with reduced cardiac protein levels of HIF-1α, and increased post-ischemic myocardial infarct size and cellular injury. NAC and ALP given alone and in particular their combination normalized cardiac levels of HO-1 and HIF-1α protein expression and prevented the increase in 15-F2t-isoprostane, resulting in significantly attenuated post-ischemic myocardial infarction. NAC and ALP also attenuated high glucose-induced post-hypoxic cardiomyocyte death in vitro. However, all the above protective effects of NAC and ALP were cancelled either by inhibition of HO-1 or HIF-1α with SnPP-IX and 2ME2 in vivo or by HO-1 or HIF-1α gene knock-down in vitro.

Conclusion

NAC and ALP confer synergistic cardioprotection in diabetes via restoration of cardiac HIF-1α and HO-1 signaling.  相似文献   
105.
Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [3H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.  相似文献   
106.
Secretoneurin enhances the adhesion and transendothelial migration properties of monocytes and is a part of the peptide family encoded by the secretogranin II gene. The expression of the secretogranin II gene is upregulated in senescent endothelium. The present study was designed to examine the effects of secretoneurin on endothelium-dependent responsiveness. Isometric tension was measured in rings (with or without endothelium) of porcine coronary arteries. Secretoneurin did not induce contraction of quiescent or contracted rings. In preparations contracted by U-46619, relaxation was observed with high concentrations of the peptide. This relaxation was endothelium dependent and reduced by the nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME). It was abolished when the preparations were incubated with l-NAME in combination with the cyclooxygenase inhibitor indomethacin. The relaxation was not affected by the combination of 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) and 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-etheno-7H-dibenzo[b,m][1,5,12,16]tetraazacyclotricosine-5,13-diiumditrifluoroacetate hydrate (UCL 1684), which abrogates endothelium-dependent hyperpolarizations. These results indicate that secretoneurin acutely induces relaxation through the activation of endothelial nitric oxide synthase (eNOS) and cyclooxygenase, with nitric oxide playing the dominant role. Prolonged (24 h) incubation with physiological concentrations of secretoneurin enhanced the relaxations to bradykinin and to the calcium ionophore A-23187, but this difference was not observed in preparations incubated with l-NAME or the calmodulin antagonist calmidazolium. Under these conditions, the relaxation to sodium nitroprusside remained unchanged. Incubation with secretoneurin significantly augmented the expression of eNOS and calmodulin as well as the dimerization of eNOS in cultures of porcine coronary arterial endothelial cells. These observations suggest that secretoneurin not only acutely causes but also, upon prolonged exposure, enhances endothelium-dependent relaxations.  相似文献   
107.
108.

Introduction

Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer’s disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology. In the current study, resting state functional magnetic resonance imaging (rsfMRI) is applied in a mouse model of amyloidosis to assess the effects of amyloid pathology on FC in the mouse brain.

Methods

Nine APP/PS1 transgenic and nine wild-type mice (average age 18.9 months) were imaged on a 7T MRI system. The mice were anesthetized with medetomidine and rsfMRI data were acquired using a gradient echo EPI sequence. The data were analysed using a whole brain seed correlation analysis and interhemispheric FC was evaluated using a pairwise seed analysis. Qualitative histological analyses were performed to assess amyloid pathology, inflammation and synaptic deficits.

Results

The whole brain seed analysis revealed an overall decrease in FC in the brains of transgenic mice compared to wild-type mice. The results showed that interhemispheric FC was relatively preserved in the motor cortex of the transgenic mice, but decreased in the somatosensory cortex and the hippocampus when compared to the wild-type mice. The pairwise seed analysis confirmed these results. Histological analyses confirmed the presence of amyloid pathology, inflammation and synaptic deficits in the transgenic mice.

Conclusions

In the current study, rsfMRI demonstrated decreased FC in APP/PS1 transgenic mice compared to wild-type mice in several brain regions. The APP/PS1 transgenic mice had advanced amyloid pathology across the brain, as well as inflammation and synaptic deficits surrounding the amyloid plaques. Future studies should longitudinally evaluate APP/PS1 transgenic mice and correlate the rsfMRI findings to specific stages of amyloid pathology.  相似文献   
109.
The powdery mildew fungus Podosphaera pannosa (Wallr.: Fr.) de Bary (syn. Sphaerotheca pannosa) is a major problem on roses worldwide. Twenty‐six monoconidial isolates of Podosphaera collected on roses and Prunus spp. in Belgium, Germany, France, Denmark, Israel and The Netherlands were characterized on the basis of differential reactions on in vitro rose genotypes and Prunus avium L. and by DNA sequence analysis of the rDNA ITS (internal transcribed spacer) region. Twenty‐four isolates were determined as P. pannosa. Amongst these, different groups could be distinguished. A first group of 18 isolates was highly virulent on rose and avirulent or very weakly virulent on P. avium. A second group of four isolates was highly virulent on both rose and P. avium. Analysis of the ITS sequence could discriminate these two groups of P. pannosa strains by a one base pair difference. Finally, two isolates of powdery mildew collected on Prunus sp. could be classified as P. pannosa based on their ITS sequence, which was identical to the ITS sequence of the isolates only highly virulent on roses. However, these two isolates were not able to infect roses. These results indicate that different strains of P. pannosa exist with varying host specificity. We demonstrated by ITS sequencing and plant reactions that the host range of P. pannosa comprises roses and Prunus spp.  相似文献   
110.
3-Methyl-substituted fatty acids are first oxidatively decarboxylated (alpha-oxidation) before they are degraded further via beta-oxidation. We synthesized [1-14C]phytanic and 3-[1-14C]methylmargaric acids in order to study their alpha-oxidation in isolated rat hepatocytes, rat liver homogenates and subcellular fractions. alpha-Oxidation was measured as the production of radioactive CO2. In isolated hepatocytes, maximal rates of alpha-oxidation amounted to 7 and 10 nmol/min x 10(8) cells with phytanic acid and 3-methylmargaric acid, respectively. At equimolar substrate concentrations, alpha-oxidation of branched fatty acids was approximately 10- to 15-fold slower than the beta-oxidation of the straight chain palmitate. In whole liver homogenates, rates of alpha-oxidation that equaled 60 to 70% of those observed in the hepatocytes were obtained. Optimum rates required O2, NADPH, Fe3+, and ATP. Fe3+ could be replaced by Fe2+ and ATP could be replaced by a number of other phosphorylated nucleosides and even inorganic phosphate without loss of activity. NADH could substitute for NADPH but not always with full restoration of activity. A variety of other cofactors and metal ions was either inhibitory or without effect. Scavengers of reactive oxygen species, known to be formed during the NADPH-dependent microsomal reduction of ferric-phosphate complexes, were without effect on alpha-oxidation. No evidence was found for the accumulation of NADPH-dependent or Fe(3+)-dependent reaction intermediates. Subcellular fractionation of liver homogenates demonstrated that alpha-oxidation was located predominantly, if not exclusively, in the endoplasmic reticulum. alpha-Oxidation, measured in microsomal fractions, was not inhibited by CO, cytochrome c, or ferricyanide, indicating that NADPH cytochrome P450 reductase and cytochrome P450 are not involved in alpha-oxidation. Our results indicate that, contrary to current belief, alpha-oxidation is catalyzed by the endoplasmic reticulum. The cofactor requirements suggest that alpha-oxidation involves the reduction of Fe3+ by electrons from NADPH and that it is stimulated by phosphate ions and nucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号