首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1876篇
  免费   146篇
  2023年   6篇
  2022年   16篇
  2021年   26篇
  2020年   22篇
  2019年   15篇
  2018年   28篇
  2017年   24篇
  2016年   35篇
  2015年   80篇
  2014年   80篇
  2013年   135篇
  2012年   145篇
  2011年   159篇
  2010年   104篇
  2009年   106篇
  2008年   127篇
  2007年   112篇
  2006年   105篇
  2005年   94篇
  2004年   94篇
  2003年   99篇
  2002年   109篇
  2001年   20篇
  2000年   9篇
  1999年   33篇
  1998年   30篇
  1997年   23篇
  1996年   12篇
  1995年   10篇
  1994年   18篇
  1993年   19篇
  1992年   15篇
  1991年   9篇
  1990年   16篇
  1989年   8篇
  1988年   12篇
  1987年   11篇
  1986年   6篇
  1985年   11篇
  1984年   10篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2022条查询结果,搜索用时 15 毫秒
991.
Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions.  相似文献   
992.
993.
The contribution of in vivo biofilm-forming potential of Staphylococcus aureus and Staphylococcus epidermidis was studied in an experimental model of foreign body infections. Increasing inocula (from 10(2) to 10(7) organisms) of ica-positive strains of S. aureus and S. epidermidis and their ica-negative isogenic mutants (the ica locus codes for a major polysaccharide component of biofilm) were injected into subcutaneously implanted tissue cages in guinea pigs. Surprisingly, bacterial counts and time-course of tissue cage infection by ica-positive strains of S. aureus or S. epidermidis were equivalent to those of their respective ica-negative mutants, in the locally infected fluids and on tissue-cage-inserted plastic coverslips.  相似文献   
994.
The synthesis and antifungal activity of 5'- and 5'-6'-substituted azasordarin derivatives are described. Modification of the 5'-position led to the discovery of the spirocyclopentyl analogue 7g, which is the first azasordarin to register single-digit MIC values versus Aspergillus spp. Further investigation identified the 5'-i-Pr derivative 7b, which displays superior pharmacokinetic properties compared to other azasordarins.  相似文献   
995.
Many seeds carry endophytes, which ensure good chances of seedling colonization. In this work, we have studied the seed-borne bacterial flora of rice varieties cultivated in the northeast of Argentina. Surface-sterilized husked seeds of the rice cultivars CT6919, El Paso 144, CAMBA, and IRGA 417 contained an average of 5×106 CFU/g of mesophilic and copiotrophic bacteria. Microbiological, physiological, and molecular characterization of a set of 39 fast-growing isolates from the CT6919 seeds revealed an important diversity of seed-borne mesophiles and potential plant probiotic activities, including diazotrophy and antagonism of fungal pathogens. In fact, the seed-borne bacterial flora protected the rice seedlings against Curvularia sp. infection. The root colonization pattern of 2 Pantoea isolates from the seeds was studied by fluorescence microscopy of the inoculated axenic rice seedlings. Both isolates strongly colonized the site of emergence of the lateral roots and lenticels, which may represent the entry sites for endophytic spreading. These findings suggest that rice plants allow grain colonization by bacterial species that may act as natural biofertilizers and bioprotectives early from seed germination.  相似文献   
996.
The autophagosome is a double-membrane bound compartment that initiates macroautophagy, a degradative pathway for cytoplasmic material terminating in the lysosomal compartment. The discovery of ATG genes involved in the formation of autophagosomes has greatly increased our understanding of the molecular basis of macroautophagy, and its role in cell function. Macroautophagy plays a pivotal role in cell fitness by removing obsolete organelles and protein aggregates. Its stimulation is an adaptive response to stressful situations, such as nutrient deprivation, intended to maintain a level of ATP compatible with cell survival. Macroautophagy is central for organ homeostasis, embryonic development, and longevity. Malfunctioning autophagy is observed in many human diseases including cancer, neurodegenerative diseases, cardiac and muscular diseases, infectious and inflammatory diseases, diabetes, and obesity. Discovering potential drug therapies that can be used to modulate macroautophagy is a major challenge, and likely to enhance the therapeutic arsenal against many human diseases.  相似文献   
997.
Single-molecule sequencing enables DNA or RNA to be sequenced directly from biological samples, making it well-suited for diagnostic and clinical applications. Here we review the properties and applications of this rapidly evolving and promising technology.  相似文献   
998.
The clinical manifestations of cerebral malaria (CM) are well correlated with underlying major pathophysiological events occurring during an acute malaria infection, the most important of which, is the adherence of parasitized erythrocytes to endothelial cells ultimately leading to sequestration and obstruction of brain capillaries. The consequent reduction in blood flow, leads to cerebral hypoxia, localized inflammation and release of neurotoxic molecules and inflammatory cytokines by the endothelium. The pharmacological regulation of these immunopathological processes by immunomodulatory molecules may potentially benefit the management of this severe complication. Adjunctive therapy of CM patients with an appropriate immunomodulatory compound possessing even moderate anti-malarial activity with the capacity to down regulate excess production of proinflammatory cytokines and expression of adhesion molecules, could potentially reverse cytoadherence, improve survival and prevent neurological sequelae. Current major drug discovery programmes are mainly focused on novel parasite targets and mechanisms of action. However, the discovery of compounds targeting the host remains a largely unexplored but attractive area of drug discovery research for the treatment of CM. This review discusses the properties of the plant immune-modifier curcumin and its potential as an adjunctive therapy for the management of this complication.  相似文献   
999.
Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.  相似文献   
1000.
Macroautophagy is a major lysosomal degradation pathway for cellular components in eukaryotic cells. Baseline macroautophagy is important for quality control of the cytoplasm in order to avoid the accumulation of cytotoxic products. Its stimulation by various stressful situations, including nutrient starvation, is important in maintaining cell survival. Here we demonstrate that macroautophagy is regulated differently depending on whether HeLa cells adhere to collagen I or collagen IV, proteins typical of connective tissue and basal membrane, respectively. We observed that the basal levels of macroautophagy were higher in cells plated on collagen IV than in cells plated on collagen I or on uncoated substrate. However, the stimulation of macroautophagy by nutrient starvation, as reflected by the buildup of autophagosomes and the increase in the autophagic flux, was higher in cells plated on collagen I than in cells plated on collagen IV. These contrasting results were not due to differences in the starvation-dependent inhibition of mTOR complex 1 signaling. Interestingly, cells plated on collagen IV formed numerous focal adhesions (FAs), whereas fewer FAs were observed in cells plated on the other substrates. This implies that focal adhesion kinase (FAK) was more robustly activated by collagen IV. Silencing the expression of FAK by siRNA in cells plated on collagen IV shifted the autophagic phenotype of these cells to an "uncoated substrate autophagic phenotype" under both basal and starvation-induced conditions. Moreover, cells plated on collagen IV were less dependent on autophagy to survive in the absence of nutrients. We conclude that extracellular matrix components can modulate macroautophagy and mitigate its role in cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号