首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1274篇
  免费   79篇
  2022年   5篇
  2021年   9篇
  2020年   14篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   12篇
  2015年   22篇
  2014年   38篇
  2013年   83篇
  2012年   55篇
  2011年   69篇
  2010年   35篇
  2009年   37篇
  2008年   61篇
  2007年   55篇
  2006年   61篇
  2005年   48篇
  2004年   57篇
  2003年   40篇
  2002年   50篇
  2001年   36篇
  2000年   66篇
  1999年   45篇
  1998年   19篇
  1997年   15篇
  1996年   19篇
  1995年   11篇
  1994年   7篇
  1993年   16篇
  1992年   29篇
  1991年   31篇
  1990年   26篇
  1989年   30篇
  1988年   28篇
  1987年   27篇
  1986年   16篇
  1985年   22篇
  1984年   20篇
  1983年   14篇
  1982年   8篇
  1981年   7篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1970年   4篇
  1969年   4篇
  1968年   10篇
  1966年   5篇
排序方式: 共有1353条查询结果,搜索用时 15 毫秒
61.
NO 3 ? is a major nitrogen source for plant nutrition, and plant cells store NO 3 ? in their vacuoles. Here, we report that a unique compost made from marine animal resources by thermophiles represses NO 3 ? accumulation in plants. A decrease in the leaf NO 3 ? content occurred in parallel with a decrease in the soil NO 3 ? level, and the degree of the soil NO 3 ? decrease was proportional to the compost concentration in the soil. The compost-induced reduction of the soil NO 3 ? level was blocked by incubation with chloramphenicol, indicating that the soil NO 3 ? was reduced by chloramphenicol-sensitive microbes. The compost-induced denitrification activity was assessed by the acetylene block method. To eliminate denitrification by the soil bacterial habitants, soil was sterilized with γ irradiation and then compost was amended. After the 24-h incubation, the N2O level in the compost soil with presence of acetylene was approximately fourfold higher than that in the compost soil with absence of acetylene. These results indicate that the low NO 3 ? levels that are often found in the leaves of organic vegetables can be explained by compost-mediated denitrification in the soil.  相似文献   
62.
63.
Strains producing higher levels of cellulolytic enzymes were selected from among 520 strains of plant pathogenic fungi, Fusarium species, and F. oxysporum strain SUF850 was found to be the best producer. When strain SUF850 was cultured using one of three polysaccharides, Avicel, carboxy- methyl cellulose (CMC) or xylan, as a carbon source, the culture filtrate contained degrading activi- ties toward all three substrates, i.e., irrespective of the carbon source used. From the culture filtrate of Avicel-grown cells, four distinct enzymes were purified to homogeneity, as judged on SDS-PAGE. They were designated as CMCase I, CMCase II, /Miitrophenyl-β-d-cellobiosidase and xylanase, and the characteristics of the individual enzymes were examined and compared.  相似文献   
64.
65.
A mold strain Y244-2 capable of producing l-lysine α-oxidase, a new enzyme catalyzing the α-oxidative deamination of l-lysine, was identified as Trichoderma viride. Among strains belonging to the genus Trichoderma tested, only Trichoderma viride Y244-2 produced the enzyme in wheat bran culture. The maximum enzyme production by the mold grown on wheat bran was observed after 10 and 14 days incubation with and without NaN03, respectively. Addition of NaN03, NH4N03, adenine, purine nucleosides, l-histidine, glycine or l-glutamine to wheat bran stimulated the production of the enzyme. In the liquid culture, the enzyme was produced extracellulary under the aerobic conditions, although the production was much lower than that in the wheat bran culture.  相似文献   
66.
The oxygen uptake rate of aggregated mycelia is decreased to an extent which, in the case of a typical spherical aggregate, could be estimated depending on its diameter, mycelial density, oxygen diffusivity, and so forth. Equations were presented in this paper to evaluate the oxygen uptake rate of an mold pellet. A favorable agreement was found between the calculation and the experiment.  相似文献   
67.
The structures of allosamidin (1) and methylallosamidin (2), novel insect chitinase inhibitors, were elucidated as 1 and 2 by acid hydrolysis experiments and analyses of 2d-NMR spectra. They are unique basic pseudotrisaccharides consisting of 2-acetamido-2-deoxy-d-allose (N-acetyl-d- allosamine) and a novel aminocyclitol derivative (3), termed allosamizoline.  相似文献   
68.
Thermostable purine nucleoside phosphorylases, PUN PI and PUNPII, have been purified from Bacillus stearothermophilus JTS 859. The characterization of PUNPI was reported previously. [Hori et al.9 Agric. Biol. Chem. 53, 2205 (1989)] PUNPII had a molecular weight of 113,000, consisting of 4 identical subunits (Mw 28,000). The isoelectric point was 5.3. The Michaelis constants for inosine, guanosine, and adenosine were 0.22, 0.34, and 0.075 mm, respectively. The optimal temperature of the reaction was 70°C. The enzyme was stable at 70°C. Although other reported purine nucleoside phosphorylases were SH-enzymes, PUNPII was not a SH-enzyme because the enzyme reaction was not inhibited by PCMB and iodoacetic acid, the optimal pH of the enzyme reaction was from 7.0 to 11.0, and the enzyme did not contain cysteine.

PUNPII and PUNPI were different in several points. Not PUNPI but PUNPII could catalyze the phosphorolysis of adenosine. Specific activity of PUNPI and II for inosine were 405 and 50.6 μmol/min/mg protein at 60°C, respectively. PUNPI was stable at 80°C. PUNPII was stable at 70°C, but was denatured at 80°C.  相似文献   
69.
Selective sodium glucose cotransporter-2 inhibitor (SGLT2i) treatment promotes urinary glucose excretion, thereby reducing blood glucose as well as body weight. However, only limited body weight reductions are achieved with SGLT2i treatment. Hyperphagia is reportedly one of the causes of this limited weight loss. However, the effects of SGLT2i treatment on systemic energy expenditure have not been fully elucidated. Herein, we investigated the acute effects of dapagliflozin, a SGLT2i, on systemic energy expenditure in mice. Eighteen hours after dapagliflozin treatment oxygen consumption and brown adipose tissue (BAT) expression of ucp1, a thermogenesis-related gene, were significantly decreased as compared to those after vehicle treatment. In addition, dapagliflozin significantly suppressed norepinephrine (NE) turnover in BAT and c-fos expression in the rostral raphe pallidus nucleus (rRPa) which contains the sympathetic premotor neurons responsible for thermogenesis. These findings indicate that the dapagliflozin-mediated acute decrease in energy expenditure involves a reduction in BAT thermogenesis via decreased sympathetic nerve activity from the rRPa. Furthermore, common hepatic branch vagotomy abolished the reductions in ucp1 expression and NE contents in BAT and c-fos expression in the rRPa. In addition, alterations in hepatic carbohydrate metabolism, such as decreases in glycogen contents and upregulation of phosphoenolpyruvate carboxykinase, manifested prior to the suppression of BAT thermogenesis, e.g. 6 hours after dapagliflozin treatment. Collectively, these results suggest that SGLT2i treatment acutely suppresses energy expenditure in BAT via regulation of an inter-organ neural network consisting of the common hepatic vagal branch and sympathetic nerves.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号