首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   9篇
  2014年   2篇
  2013年   9篇
  2012年   13篇
  2011年   15篇
  2010年   10篇
  2009年   3篇
  2007年   12篇
  2006年   4篇
  2005年   2篇
  2004年   10篇
  2002年   8篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   9篇
  1992年   7篇
  1991年   9篇
  1990年   11篇
  1989年   18篇
  1988年   13篇
  1987年   22篇
  1986年   15篇
  1985年   16篇
  1984年   14篇
  1983年   11篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   8篇
  1976年   8篇
  1975年   9篇
  1974年   5篇
  1973年   6篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有347条查询结果,搜索用时 500 毫秒
131.
The synthesis of disaccharide repeating units, D-GlcA-(beta 1----3)-L-Rha (fragment A) and L-Rha-(alpha 1----3)-D-GlcA (fragment B), of the K54-antigenic polysaccharide from uropathogenic Escherichia coli 06:K54:H10 is described. Essential stages of the synthesis of fragment A involved the glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside followed by acetolysis of the methyl bioside obtained and further transformation into 2-(benzyloxycarbonylamino)ethyl glycoside; deprotection and, finally, conversion into 2-(acrylamido)ethyl glycoside. Selective opening of lactone ring in 2-azidoethyl 2,4-di-O-acetyl-beta-D-glucopyranoside-6,3-lactone was used for deprotection of 3-OH group in the synthesis of fragment B. Rhamnosylation of the glucuronic acid derivative thus obtained followed by transformation into 2-(acrylamido)ethyl glycoside and deprotection gave fragment B. Both fragments A and B were converted into artificial antigens of copolymer type.  相似文献   
132.
133.
134.
The interaction of alpha-D-glucopyranosyl pyrophosphates of 5-X-uridines (X = CH3, NH2, CH3O, I, Br, Cl, OH) with uridine diphosphate glucose (UDPGlc) dehydrogenase (EC 1.1.1.22) from calf liver has been studied. All the derivatives investigated were able to serve as substrates for the enzyme. The apparent Michaelis constants for UDPGlc-analogs were dependent both on electronic and steric factors. Increase of substituent negative inductive effect lead to decrease of pKa for ionization of the NH-group in the uracil nucleus and, consequently, to a diminishing of the proportion of the active analog species under the conditions of assay. After correction for the ionization effect, the Km values were found to depend on the van der Waals radius of the substituent. The value of 1.95 A seems to be critical, as the analogs with bulkier substituents at C-5 showed a decreased affinity to the enzyme. The maximal velocity values of the analogs were also dependent on nature of the substituent. Good linear correlation between log V and substituent hydrophobic phi-constant was observed for a number of the analogs, although V values for the nucleotides with X = H, OH or NH2 were higher than would be expected on the basis of the correlation. The significance of the results for understanding of the topography of UDPGlc dehydrogenase active site is discussed.  相似文献   
135.
The paper describes chemical synthesis of uridine diphosphate 2-deoxyglucose (UDPdGlc) through reaction of uridine 5′-phosphomorpholidate with 2-deoxy-α-d-glucopyranosyl phosphate. The prepared analog of uridine diphosphate glucose (UDPGlc) served as a substrate for calf liver UDPGlc dehydrogenase (EC 1.1.1.22), the reaction product was identified as nucleotide deoxyhexuronic acid derivative. The apparent Km for UDPdGlc was found to be 60 times that of UDPGlc, and the relative V value for the analog was 0.09. The peculiar lag-period in reaction kinetics has been observed for the analog, and is presumably connected with the slow rate of the initial stages of the reaction. UDPdGlc was found to be quite an efficient substrate for UDPGlc 4-epimerases (EC 5.1.3.2) from yeast, calf liver and mung bean seedlings.  相似文献   
136.
137.
138.
The O-specific polysaccharide obtained from Shigella dysenteriae type-2 lipopolysaccharide by mild acid hydrolysis consisted of N-acetylgalactosamine, N-acetylglucosamine, D-galactose, D-glucose, and O-acetyl group in the ratio of 2:1:1:1:1. A number of oligosaccharides were obtained by deamination of the N-deacetylated polysaccharide and by Smith degradation of the both native and O-deacetylated polysaccharides. The identification of oligosaccharides along with methylation analysis and chromic anhydride oxidation showed that the polysaccharide was built up of the repeating pentasaccharide units whose proposed structure is given below: (see article) Serological properties of Sh. dysenteriae O-specific polysaccharides are discussed.  相似文献   
139.
It is supposed that α,γ-diketo acids (DKAs) inhibit the activity of hepatitis C virus RNA-dependent RNA poly-merase (RdRP HCV) via chelation of catalytic magnesium ions in the active center of the enzyme. However, DKAs display noncompetitive mode of inhibition with respect to NTP substrate, which contradicts the proposed mechanism. We have examined the NTP substrate entry channel and the active site of RdRP HCV for their possible interaction with DKAs. The substitutions R48A, K51A, and R222A greatly facilitated RdRP inhibition by DKAs and simultaneously increased K m values for UTP substrate. Interestingly, C223A was the only one of a number of substitutions that decreased K m(UTP) but facilitated the inhibitory action of DKAs. The findings allowed us to model an enzyme-inhibitor complex. According to the proposed model, DKAs introduce an additional Mg2+ ion into the active site of the enzyme at a stage of phosphodiester bond formation, which results in displacement of the NTP substrate triphosphate moiety to a catalytically inactive binding mode. This mechanism, in contrast to the currently adopted one, explains the noncompetitive mode of inhibition.  相似文献   
140.
Rhizosphere strains of P. aureofaciens BS1393(pBS216, pKS1) and P. chlororaphis PCL1391(pBS216, pKS1), exhibiting the ability to stimulate the growth of plants and protect them from phytopathogens, have been obtained. In these strains, plasmid pBS216 ensures naphthalene degradation and plasmid pKS1 confers resistance to arsenic. In the presence of arsenic and naphthalene, the number of living cells and the growth rate of the arsenic-resistant strains were higher than those of the arsenic-sensitive strains BS1393(pBS216) and PCL1391(pBS216). During the cultivation of the resistant strains, arsenic had no inhibitory effect on the activity of the key enzymes of naphthalene biodegradation, except for catechol-2,3-dioxygenase. In a model system containing plant-microbial associations, strains BS1393(pBS216, pKS1) and PCL1391(pBS216, pKS1) degraded as much as 97% of added naphthalene in the presence of arsenic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号