首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   7篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   5篇
  2014年   14篇
  2013年   15篇
  2012年   21篇
  2011年   18篇
  2010年   8篇
  2009年   6篇
  2008年   12篇
  2007年   18篇
  2006年   12篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有206条查询结果,搜索用时 31 毫秒
41.
Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.  相似文献   
42.
43.
Based on several samples of Middle and Late Triassic age, the authors describe a new family of spumellarian Radiolaria – Trimeridianellidae Dumitrica and Tekin, characterized by a three-fold symmetry, a first shell of triangular prism type with 6 primary rays originated at the edges of two bases of the prism, or 3 meridian arches with 3 equatorial rays, and growth of pyloniacean type. The family comprises 4 monospecific new genera (Enneacladus Dumitrica, Endoprisma Dumitrica, Trimeridianella Dumitrica and Tekin, and Tristylopyle Dumitrica), 4 new species and one left in open nomenclature. In spite of their spotty occurrences and low diversity, the authors attempt to trace the evolution of the family, which is considered to be the result of heterochrony in ontogenetic growth, mostly of paedomorphic type. The family seems to be related to the Middle Triassic family Patruliidae Dumitrica with which it shares in common the simple microsphere with 6 primary rays and the pyloniacean mode of growth.  相似文献   
44.
Eighty-five putative Pseudomonas isolates were obtained from various raw milk and pasteurized milk samples using Pseudomonas CFC agar. Among them, 36 isolates were identified as Pseudomonas fluorescens, and one isolate was identified as Pseudomonas putida. Lipase activity of the strains was quantitatively measured by the spectrophotometric method using p-nitrophenyl palmitate (p-NPP) as substrate. Detected lipase activity of the strains was between 10.03 U/mL and 22.16 U/mL. Pseudomonas fluorescens RB02-3 possessed the highest lipase activity. The extracellular lipase of P. fluorescens RB02-3 strain was homogeneously purified using a combination of ammonium sulfate precipitation, dialysis, and gel filtration column chromatography. This purification procedure resulted in 2.97-fold purification with 20.3% recovery. The enzyme was characterized, and exhibited maximum activity at pH 7.0 and 50 °C; after it was incubated for 1 h it was activated in the presence of hexane, ethyl acetate, isopropanol, and ethanol and remained stable after the incubation was extended for 2 hr. The lipase was slightly inhibited in the presence of Zn2+, Co2+, Cu2+, Ni2+ salts, and ethylenediamine tetraacetic acid (EDTA), whereas Cd2+, sodium dodecyl sulfate (SDS), and Tween-80 had no effect on its activity.  相似文献   
45.
Cystine‐knot peptides sharing a common fold but displaying a notably large diversity within the primary structure of flanking loops have shown great potential as scaffolds for the development of therapeutic and diagnostic agents. In this study, we demonstrated that the cystine‐knot peptide MCoTI‐II, a trypsin inhibitor from Momordica cochinchinensis, can be engineered to bind to cytotoxic T lymphocyte‐associated antigen 4 (CTLA‐4), an inhibitory receptor expressed by T lymphocytes, that has emerged as a target for the treatment of metastatic melanoma. Directed evolution was used to convert a cystine‐knot trypsin inhibitor into a CTLA‐4 binder by screening a library of variants using yeast surface display. A set of cystine‐knot peptides possessing dissociation constants in the micromolar range was obtained; the most potent variant was synthesized chemically. Successive conjugation with neutravidin, fusion to antibody Fc domain or the oligomerization domain of C4b binding protein resulted in oligovalent variants that possessed enhanced (up to 400‐fold) dissociation constants in the nanomolar range. Our data indicate that display of multiple knottin peptides on an oligomeric scaffold protein is a valid strategy to improve their functional affinity with ramifications for applications in diagnostics and therapy. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
46.
This paper provides an overview of different nanostructured architectures utilised in electrochemical devices and their application in biosensing and bioelectronics. Emphasis is placed on the fabrication of nanostructured films based on a layer-by-layer (LBL) films approach. We discuss the theory and the mechanism of charge transfer in polyelectrolyte multilayer films (PEM), as well as between biomolecules and redox centres, for the development of more sensitive and selective biosensors. Further, this paper presents an overview of topics involving the interaction between nanostructured materials, including metallic nanoparticles and carbon materials, and their effects on the preservation of the activity of biological molecules immobilised on electrode surfaces. This paper also presents examples of biological molecules utilised in film fabrication, such as DNA, several kinds of proteins, and oligonucleotides, and of the role of molecular interaction in biosensing performance. Towards the utilisation of LBL films, examples of several architectures and different electrochemical approaches demonstrate the potential of nanostructured LBL films for several applications that include the diagnosis and monitoring of diseases. Our main aim in this review is to survey what can assist researchers by presenting various approaches currently used in the field of bioelectrochemistry utilising supramolecular architectures based on an LBL approach for application in electrochemical biosensing.  相似文献   
47.
48.
In this study, a major cellulase, namely endoglucanase 1 (EGI) from Trichoderma reesei was mutated by the introduction of four different lysine and glycine rich loops to create a hotspot for directed crosslinking of EGI away from the active site. The impact of the inserted loops on the stability of the enzyme was analyzed using molecular dynamics (MD) and the effect on the active site was studied using molecular mechanics (MM) simulations. The best loop mutation predicted in silico (EGI_L5) was introduced to EGI via site directed mutagenesis. The loop mutant EGI_L5 and EGI were both expressed in Pichia pastoris. Enzymes were characterized and their activities against soluble substrates such as CMC and 4-MUC were determined. Both enzymes exhibited similar pH and temperature activity and thermal stability profiles. Moreover, specific activity of EGI_L5 against 4-MUC was found to be the same as the native enzyme.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号