首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   6篇
  2021年   6篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   6篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
  1979年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
51.
A new variant of glucose phosphate isomerase (GPI), also known as phosphohexose isomerase (PHI), was detected in a primitive pig population.  相似文献   
52.
Remarkable progress has been made in the field of G protein-coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis.  相似文献   
53.
54.
Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following 13C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas 13C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and needs further study.  相似文献   
55.
The G protein-coupled β2-adrenoreceptor (β2AR) signals through the heterotrimeric G proteins Gs and Gi and β-arrestin. As such, the energy landscape of β2AR-excited state conformers is expected to be complex. Upon tagging Cys-265 of β2AR with a trifluoromethyl probe, 19F NMR was used to assess conformations and possible equilibria between states. Here, we report key differences in β2AR conformational dynamics associated with the detergents used to stabilize the receptor. In dodecyl maltoside (DDM) micelles, the spectra are well represented by a single Lorentzian line that shifts progressively downfield with activation by appropriate ligand. The results are consistent with interconversion between two or more states on a time scale faster than the greatest difference in ligand-dependent chemical shift (i.e. >100 Hz). Given that high detergent off-rates of DDM monomers may facilitate conformational exchange between functional states of β2AR, we utilized the recently developed maltose-neopentyl glycol (MNG-3) diacyl detergent. In MNG-3 micelles, spectra indicated at least three distinct states, the relative populations of which depended on ligand, whereas no ligand-dependent shifts were observed, consistent with the slow exchange limit. Thus, detergent has a profound effect on the equilibrium kinetics between functional states. MNG-3, which has a critical micelle concentration in the nanomolar regime, exhibits an off-rate that is 4 orders of magnitude lower than that of DDM. High detergent off-rates are more likely to facilitate conformational exchange between distinct functional states associated with the G protein-coupled receptor.  相似文献   
56.
57.
58.
G protein-coupled receptors represent the largest class of drug discovery targets. Drugs that activate G protein-coupled receptors are classified as either agonists or partial agonists. To study the mechanism whereby these different classes of activating ligands modulate receptor function, we directly monitored ligand-induced conformational changes in the G protein-coupling domain of the beta(2) adrenergic receptor. Fluorescence lifetime analysis of a reporter fluorophore covalently attached to this domain revealed that, in the absence of ligands, this domain oscillates around a single detectable conformation. Binding to an antagonist does not change this conformation but does reduce the flexibility of the domain. However, when the beta(2) adrenergic receptor is bound to a full agonist, the G protein coupling domain exists in two distinct conformations. Moreover, the conformations induced by a full agonist can be distinguished from those induced by partial agonists. These results provide new insight into the structural consequence of antagonist binding and the basis of agonism and partial agonism.  相似文献   
59.
The transition of rhodopsin from the inactive to the active state is associated with proton uptake at Glu(134) (1), and recent mutagenesis studies suggest that protonation of the homologous amino acid in the alpha(1B) adrenergic receptor (Asp(142)) may be involved in its mechanism of activation (2). To further explore the role of protonation in G protein-coupled receptor activation, we examined the effects of pH on the rate of ligand-induced conformational change and on receptor-mediated G protein activation for the beta(2) adrenergic receptor (beta(2)AR). The rate of agonist-induced change in the fluorescence of NBD-labeled, purified beta(2)AR was 2-fold greater at pH 6.5 than at pH 8, even though agonist affinity was lower at pH 6.5. This biophysical analysis was corroborated by functional studies; basal (agonist-independent) activation of Galpha(s) by the beta(2)AR was greater at pH 6.5 compared with pH 8.0. Taken together, these results provide evidence that protonation increases basal activity by destabilizing the inactive state of the receptor. In addition, we found that the pH sensitivity of beta(2)AR activation is not abrogated by mutation of Asp(130), which is homologous to the highly conserved acidic amino acids that link protonation to activation of rhodopsin (Glu(134)) and the alpha(1B) adrenergic receptor (Asp(142)).  相似文献   
60.
Activin is known to play an important regulatory role in reproduction, including pregnancy. To further examine the role and signaling mechanism of activin in regulating placental function, the steady-state level of activin type I receptor (ActRI) mRNA in immortalized extravillous trophoblasts (IEVT) cells was measured using competitive PCR (cPCR). An internal standard of ActRI cDNA for cPCR was constructed for the quantification of ActRI mRNA levels in IEVT cells. ActRI mRNA levels were increased in a dose-dependent manner by activin-A with the maximal effect observed at the dose of 10 ng/ml. Time course studies revealed that activin-A had maximal effects on ActRI mRNA levels at 6 hours after treatment. The effects of activin-A on ActRI mRNA levels was blocked by follistatin, an activin binding protein, in a dose-dependent manner. In addition, inhibin-A inhibited basal, as well as activin-A-induced ActRI mRNA levels. These findings provide evidence, for the first time, that activin-A modulates ActRI mRNA levels in human trophoblast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号