首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   5篇
  78篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1986年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有78条查询结果,搜索用时 0 毫秒
71.
Aims Release of carbon from plant roots initiates a chain of reactions involving the soil microbial community and microbial predators, eventually leading to nutrient enrichment, a process known as the 'microbial loop'. However, root exudation has also been shown to stimulate nutrient immobilization, thereby reducing plant growth. Both mechanisms depend on carbon exudation, but generate two opposite soil nutrient dynamics. We suggest here that this difference might arise from temporal variation in soil carbon inputs.Methods We examined how continuous and pulsed carbon inputs affect the performance of wheat (Triticum aestivum), a fast-growing annual, while competing with sage (Salvia officinalis), a slow-growing perennial. We manipulated the temporal mode of soil carbon inputs under different soil organic matter (SOM) and nitrogen availabilities. Carbon treatment included the following two carbon input modes: (i) Continuous: a daily release of minute amounts of glucose, and (ii) Pulsed: once every 3 days, a short release of high amounts of glucose. The two carbon input modes differed only in the temporal dynamic of glucose, but not in total amount of glucose added. We predicted that pulsed carbon inputs should result in nutrient enrichment, creating favorable conditions for the wheat plants.Important findings Carbon addition caused a reduction in the sage total biomass, while increasing the total wheat biomass. In SOM-poor soil without nitrogen and in SOM-rich soil with nitrogen, wheat root allocation was higher under continuous than under pulsed carbon input. Such an allocation shift is a common response of plants to reduced nutrient availability. We thus suggest that the continuous carbon supply stimulated the proliferation of soil microorganisms, which in turn competed with the plants over available soil nutrients. The fact that bacterial abundance was at its peak under this carbon input mode support this assertion. Multivariate analyses indicated that besides the above described changes in plant biomasses and bacterial abundances, carbon supply led to an accumulation of organic matter, reduction in NO 3 levels and increased levels of NH 4 in the soil. The overall difference between the two carbon input modes resulted primarily from the lower total wheat biomass, and lower levels of NO 3 and soil PH characterizing pots submitted to carbon pulses, compared to those subjected to continuous carbon supply. Carbon supply, in general, and carbon input mode, in particular, can lead to belowground chain reactions cascading up to affect plant performance.  相似文献   
72.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp, etk, and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk. Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.  相似文献   
73.
Cloning and characterization of micro-RNAs from moss   总被引:16,自引:0,他引:16  
Micro-RNAs (miRNAs) are one class of endogenous tiny RNAs that play important regulatory roles in plant development and responses to external stimuli. To date, miRNAs have been cloned from higher plants such as Arabidopsis, rice and pumpkin, and there is limited information on their identity in lower plants including Bryophytes. Bryophytes are among the oldest groups of land plants among the earth's flora, and are important for our understanding of the transition to life on land. To identify miRNAs that might have played a role early in land plant evolution, we constructed a library of small RNAs from the juvenile gametophyte (protonema) of the moss Physcomitrella patens. Sequence analysis revealed five higher plant miRNA homologues, including three members of the miR319 family, previously shown to be involved in the regulation of leaf morphogenesis, and miR156, which has been suggested to regulate several members of the SQUAMOSA PROMOTER BINDING-LIKE (SPL) family in Arabidopsis. We have cloned PpSBP3, a moss SPL homologue that contains an miR156 complementary site, and demonstrated that its mRNA is cleaved within that site suggesting that it is an miR156 target in moss. Six additional candidate moss miRNAs were identified and shown to be expressed in the gametophyte, some of which were developmentally regulated or upregulated by auxin. Our observations suggest that miRNAs play important regulatory roles in mosses.  相似文献   
74.
Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.  相似文献   
75.
Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer’s disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could partially contribute to learning and memory problems of AD patients.  相似文献   
76.
77.
A new speciesCoronilla moravica (familyFabaceae) is described from the locality ?aklovy N of Uherský Brod in E Moravia, Czechoslovakia.  相似文献   
78.
A Lambda phage was constructed in which the structural gene for beta galactosidase is fused to a DNA segment carrying the ribosomal promoter rrnB of E. coli. In this hybrid operon beta galactosidase synthesis in vitro is repressed by ppGpp. Repression of beta galactosidase synthesis by cAMP is reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号