首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8075篇
  免费   513篇
  国内免费   6篇
  8594篇
  2021年   75篇
  2020年   38篇
  2019年   56篇
  2018年   77篇
  2017年   77篇
  2016年   110篇
  2015年   163篇
  2014年   199篇
  2013年   435篇
  2012年   373篇
  2011年   367篇
  2010年   237篇
  2009年   247篇
  2008年   370篇
  2007年   405篇
  2006年   370篇
  2005年   383篇
  2004年   372篇
  2003年   340篇
  2002年   332篇
  2001年   339篇
  2000年   340篇
  1999年   277篇
  1998年   128篇
  1997年   116篇
  1996年   85篇
  1995年   86篇
  1994年   78篇
  1993年   72篇
  1992年   208篇
  1991年   170篇
  1990年   159篇
  1989年   168篇
  1988年   160篇
  1987年   119篇
  1986年   116篇
  1985年   108篇
  1984年   88篇
  1983年   74篇
  1982年   49篇
  1981年   42篇
  1980年   50篇
  1979年   51篇
  1978年   57篇
  1977年   42篇
  1976年   33篇
  1975年   34篇
  1974年   46篇
  1973年   51篇
  1972年   35篇
排序方式: 共有8594条查询结果,搜索用时 0 毫秒
931.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   
932.
We chemically synthesized epolactaene, a neuritogenic compound in human neuroblastoma cells, and investigated its biochemical action in vitro. Epolactaene and its derivatives selectively inhibited the activities of mammalian DNA polymerase alpha and beta and human DNA topoisomerase II, with IC(50) values of 25, 94, and 10 microM, respectively. By comparison with its structural derivatives, the long alkyl side chain in epolactaene seemed to have an important role in this inhibitory effect. The compound did not influence the activities of plant or prokaryotic DNA polymerases or of other DNA metabolic enzymes such as telomerase, RNA polymerase, and deoxyribonuclease I. Epolactaene did not intercalate into DNA. These results suggested that the neuritogenic compound epolactaene influences both DNA polymerases and topoisomerase II despite the dissimilarity in both structure and properties of these two enzymes and that inhibition of these enzymes could be related to the neuritogenic effect in human neuroblastoma cells. The relationship between the neuritogenic mechanism and cell cycle regulation by epolactaene was also discussed.  相似文献   
933.
Selenomonas ruminantium strains were isolated from sheep rumen, and their significance for fiber digestion was evaluated. Based on the phylogenetic classification, two clades of S. ruminantium (clades I and II) were proposed. Clade II is newly found, as it comprised only new isolates that were phylogenetically distant from the type strain, while all of the known isolates were grouped in the major clade I. More than half of clade I isolates displayed CMCase activity with no relation to the degree of bacterial adherence to fibers. Although none of the isolates digested fiber in monoculture, they stimulated fiber digestion when co-cultured with Fibrobacter succinogenes, and there was an enhancement of propionate production. The extent of such synergy depended on the clade, with higher digestion observed by co-culture of clade I isolates with F. succinogenes than by co-culture with clade II isolates. Quantitative PCR analysis showed that bacterial abundance in the rumen was higher for clade I than for clade II. These results suggest that S. ruminantium, in particular the major clade I, is involved in rumen fiber digestion by cooperating with F. succinogenes.  相似文献   
934.
Yonezawa T  Haga S  Kobayashi Y  Takahashi T  Obara Y 《FEBS letters》2006,580(28-29):6635-6643
Visfatin was originally identified as a growth factor for immature B cells, and recently demonstrated to bind insulin receptor. Visfatin mRNA and protein were detected by RT-PCR and Western blot analysis in cloned bovine mammary epithelial cells, lactating bovine mammary gland and human breast cancer cell line, MCF-7. Immunocytochemical staining localized the visfatin protein in the cytosol and nucleus of both cells. Quantitative-RT-PCR analysis revealed that the expression of the visfatin mRNA was significantly elevated when treated with forskolin (500 microM), isopreterenol (1-10 microM) and dibutyric cyclic AMP (1 mM) for 24 h, and significantly reduced when treated with insulin (5-50 ng/ml) and dexsamethasone (0.5-250 nM) for 24 h. These results indicate that mammary epithelial cells express the visfatin protein and secrete them into the milk.  相似文献   
935.
Intercellular adhesions between renal glomerular epithelial cells (also called podocytes) are necessary for the proper function of the glomerular filtration barrier. Although our knowledge of the molecular composition of podocyte cell-cell contact sites has greatly progressed, the underlying molecular mechanism regulating the formation of these cell-cell contacts remains largely unknown. We have used forskolin, an activator of adenylyl cyclase that elevates the level of intracellular cAMP, to investigate the effect of cAMP and three Rho-family small GTPases (RhoA, Cdc42, and Rac1) on the regulation of cell-cell contact formation in a murine podocyte cell line. Transmission electron microscopy and the immunostaining of cell adhesion molecules and actin-associated proteins have revealed a structural change at the site of cell-cell contact following forskolin treatment. The activity of the Rho-family small GTPases before and after forskolin treatment has been evaluated with a glutathione-S-transferase pull-down assay. Forskolin reinforces the integrity of cell-cell contacts, resulting in the closure of an intercellular adhesion zipper, accompanied by a redistribution of cell adhesion molecules and actin-associated proteins in a continuous linear pattern at cell-cell contacts. The Rho-family small GTPases Rac1 and Cdc42 are activated during closure of the adhesion zipper, whereas RhoA is suppressed. Thus, cAMP promotes the assembly of cell-cell contacts between podocytes via a mechanism that probably involves Rho-family small GTPases. This study was supported in part by a grant-in-aid for scientific research from the Japanese Ministry for Education, Culture, Sports, Science, and Technology (to N. K., no. 14570015). S-Y.G. is a recipient of a grant awarded by the Japanese government to graduate students from foreign countries.  相似文献   
936.
Serum C-peptide immunoreactivity (CPR)/immunoreactive insulin (IRI) molar ratio was determined in 136 subjects without renal, hepatic and thyroid disorders, at fasting, and during the initial period of 75 g-oral glucose tolerance test. The subjects were divided into 4 groups based on their body weight and age; Group A, young (< 55 years) and normal body weight (body mass index [BMI, kg/m2] < or = 25) subjects; Group B, young and overweight (BMI > 25) subjects; Group C, aged (> or = 55 years) and normal body weight (BMI < or = 25) subjects; Group D, aged and overweight subjects. Fasting CPR/IRI ratio and absolute CPR level negatively correlated in Groups B and D but not in A and C. After oral glucose load with elevation of insulin, CPR/IRI ratio invariably declined in all groups and significant negative correlation between CPR/IRI and CPR was found in Groups A, B and D but not in C. Slope of the regression lines obtained for correlation between CPR/IRI ratio and CPR were significantly steeper at fasting compared to the post-stimulation phase. CPR/IRI ratio is affected by hyperinsulinemia and oral glucose load but not by obesity alone. Assuming that CPR/IRI ratio reflects hepatic extraction of insulin, the insulin clearance at fasting is progressively reduced with increasing insulin secretion in overweight subjects: failure to detect such phenomenon in normal body weight subjects may be due to a narrower CPR range in this population. Insulin metabolism at fasting and during glucose stimulation is likely to be regulated by distinct factors.  相似文献   
937.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   
938.
For functional reconstitution of bacterial cotransporters (carriers or permeases) including the sodium-coupled branched-chain amino acid carrier (LIV-II carrier) of Pseudomonas aeruginosa, the presence of phospholipid is required through the process of solubilization and purification of the transporters from the bacterial membranes, suggesting the possibility that phospholipid may stabilize the structure of the cotransporter proteins to be in a functional form. In this study, this possibility was examined by studying the effect of denaturant on the secondary structure of the LIV-II carrier purified in the absence and presence of phospholipid using circular dichroism (CD) spectroscopy. CD spectra of the purified LIV-II carrier solubilized in n-octyl-beta-D-glucopyranoside (OG), OG/dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) mixture, and dispersed into DOPE/DOPG small unilamellar vesicles were measured in the absence of denaturant. The three spectra were very similar and had a trough at 222 nm with mean residue molar ellipticity of -23000 deg.cm(2)/dmol and a shoulder at 208 nm. CD spectral analyses with three different methods (S.W. Provencher, J. Gl?ckner, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20 (1981) 33-37; J.Y. Yang, C.-S.C. Wu, H.Z. Martinez, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130 (1986) 208-269; N. Sreerama, R.W. Woody, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209 (1993) 32-44) revealed that the LIV-II carrier solubilized in OG/DOPE/DOPG mixture contained 69-75% alpha-helix and 0-9% beta-sheet. Addition of 6 M guanidine hydrochloride decreased 48% of the amplitude at 222 nm of the CD spectrum of the carrier solubilized in OG alone and 9-14% of the CD amplitude of the carrier solubilized in OG/DOPE/DOPG or OG/dioleoylphosphatidylcholine mixture and dispersed in liposomes composed of DOPE/DOPG. These results show that the ordered secondary structure of the LIV-II carrier is partially unfolded in OG without phospholipid by denaturant but is greatly stabilized with phospholipids with oleoyl chains independently of their polar head group composition and suggest that the alpha-helical structure of the carrier is mainly embedded in the lipid environment.  相似文献   
939.
This study was designed to evaluate the effects of enriching an essential amino acid (EAA) mixture with leucine on muscle protein metabolism in elderly and young individuals. Four (2 elderly and 2 young) groups were studied before and after ingestion of 6.7 g of EAAs. EAAs were based on the composition of whey protein [26% leucine (26% Leu)] or were enriched in leucine [41% leucine (41% Leu)]. A primed, continuous infusion of L-[ring-2H5]phenylalanine was used together with vastus lateralis muscle biopsies and leg arteriovenous blood samples for the determinations of fractional synthetic rate (FSR) and balance of muscle protein. FSR increased following amino acid ingestion in both the 26% (basal: 0.048 +/- 0.005%/h; post-EAA: 0.063 +/- 0.007%/h) and the 41% (basal: 0.036 +/- 0.004%/h; post-EAA: 0.051 +/- 0.007%/h) Leu young groups (P < 0.05). In contrast, in the elderly, FSR did not increase following ingestion of 26% Leu EAA (basal: 0.044 +/- 0.003%/h; post-EAA: 0.049 +/- 0.006%/h; P > 0.05) but did increase following ingestion of 41% Leu EAA (basal: 0.038 +/- 0.007%/h; post-EAA: 0.056 +/- 0.008%/h; P < 0.05). Similar to the FSR responses, the mean response of muscle phenylalanine net balance, a reflection of muscle protein balance, was improved (P < 0.05) in all groups, with the exception of the 26% Leu elderly group. We conclude that increasing the proportion of leucine in a mixture of EAA can reverse an attenuated response of muscle protein synthesis in elderly but does not result in further stimulation of muscle protein synthesis in young subjects.  相似文献   
940.
Nicotianamine (NA), a metal chelator, is ubiquitous in higher plants. In humans, NA inhibits angiotensin I-converting enzyme (ACE), and consequently reduces high blood pressure. Nicotianamine is synthesized from the trimerization of S-adenosylmethionine (SAM) by NA synthase (NAS). Here, we aimed to produce large amounts of NA fermentatively by introducing the Arabidopsis AtNAS2 gene into Saccharomyces cerevisiae strain SCY4. This strain can accumulate up to 100 times the usual amount of SAM, and this is considered desirable for overproduction of NA. Nicotianamine was produced in the engineered yeast, and the NA level increased with incubation time until the stationary phase. The maximum concentration of intracellular NA obtained was 766+/-33 microg/g wet weight. Successful production of NA in S. cerevisiae should pave the way for industrial production of this novel antihypertensive substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号