首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4323篇
  免费   312篇
  国内免费   6篇
  2023年   19篇
  2022年   35篇
  2021年   81篇
  2020年   47篇
  2019年   58篇
  2018年   113篇
  2017年   84篇
  2016年   140篇
  2015年   228篇
  2014年   238篇
  2013年   288篇
  2012年   319篇
  2011年   325篇
  2010年   191篇
  2009年   176篇
  2008年   226篇
  2007年   192篇
  2006年   226篇
  2005年   184篇
  2004年   176篇
  2003年   172篇
  2002年   155篇
  2001年   95篇
  2000年   101篇
  1999年   75篇
  1998年   40篇
  1997年   29篇
  1996年   28篇
  1995年   24篇
  1994年   32篇
  1993年   25篇
  1992年   46篇
  1991年   33篇
  1990年   31篇
  1989年   32篇
  1988年   21篇
  1987年   25篇
  1986年   17篇
  1985年   17篇
  1984年   17篇
  1983年   20篇
  1979年   18篇
  1977年   16篇
  1975年   17篇
  1974年   20篇
  1973年   17篇
  1972年   20篇
  1970年   13篇
  1969年   13篇
  1967年   13篇
排序方式: 共有4641条查询结果,搜索用时 31 毫秒
171.
BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.  相似文献   
172.
Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1–1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m2 over ~102 km2 under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life.  相似文献   
173.
Citrobacter amalonaticus Y19 (Y19) was isolated because of its ability for carbon monoxide-dependent hydrogen production (water–gas shift reaction). This paper reports the assimilation of glycerol and the production of 1,3-propanediol (1,3-PDO) by Y19. Genome sequencing revealed that Y19 contained the genes for the utilization of glycerol and 1,2-propanediol (pdu operon) along with those for the synthesis of coenzyme B12 (cob operon). On the other hand, it did not possess the genes for the fermentative metabolism of glycerol of Klebsiella pneumoniae, which consists of both the oxidative (dhaD and dhaK) and reductive (dhaB and dhaT) pathways. In shake-flask cultivation under aerobic conditions, Y19 could grow well with glycerol as the sole carbon source and produced 1,3-PDO. The level of 1,3-PDO production was improved when vitamin B12 was added to the culture medium under aerobic conditions. Under anaerobic conditions, cell growth and 1,3-PDO production on glycerol was also possible, but only when an exogenous electron acceptor, such as nitrate or fumarate, was added. This is the first report of the glycerol metabolism and 1,3-PDO production by C. amalonaticus Y19.  相似文献   
174.
175.
Electrolyte filtration arises due to the presence of fixed charges in cartilage extracellular matrix glycosaminoglycans (GAGs). Commonly assumed negligible, it can be important for design and interpretation of streaming potential measurements and modeling assumptions. To quantify the scale of this phenomenon, chloride ion concentration in exudate of compressed cartilage was measured by Mohr’s titration and explant GAG content was colorimetrically assayed. Pilot studies indicated that an appropriate strain rate for experiments was 8 × 10−3 s−1 to eliminate concerns of exudate evaporation and explant damage (at low and high strain rates, respectively). Exudate chloride concentration of explants equilibrated in 1× PBS was significantly (p < 0.05) lower than the bath chloride concentration at strains of 37.5, 50, and 62.5%, with clear dependence on strain magnitude. Exudate chloride concentration was also significantly lower than that of the bath when 50% strain was applied after equilibration in 0.5, 1, and 2× PBS, with a trend for an increase in this relative difference with decreasing bath concentration (p = 0.065 between 0.5 and 2× PBS). Decreasing exudate chloride concentration correlated negatively with increasing postcompression GAG concentration. No difference between exudate chloride concentration and bath chloride concentration was ever observed for compression of uncharged agarose gel controls. Findings show that exudate from compressed cartilage is dilute relative to the bath due to the presence of matrix fixed charges, and this difference can generate diffusion potentials external to the explant, which may affect streaming potential measurements particularly under conditions of low strain rates and high strains.  相似文献   
176.
Metagenomic resources representing ruminal bacteria were screened for novel exocellulases using a robotic, high-throughput screening system, the novel CelEx-BR12 gene was identified and the predicted CelEx-BR12 protein was characterized. The CelEx-BR12 gene had an open reading frame (ORF) of 1140 base pairs that encoded a 380-amino-acid-protein with a predicted molecular mass of 41.8 kDa. The amino acid sequence was 83% identical to that of a family 5 glycosyl hydrolase from Prevotella ruminicola 23. Codon-optimized CelEx-BR12 was overexpressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The Michaelis–Menten constant (Km value) and maximal reaction velocity (Vmax values) for exocellulase activity were 12.92 μM and 1.55 × 104 μmol min−1, respectively, and the enzyme was optimally active at pH 5.0 and 37 °C. Multifunctional activities were observed against fluorogenic and natural glycosides, such as 4-methylumbelliferyl-β-d-cellobioside (0.3 U mg−1), CMC (105.9 U mg−1), birch wood xylan (132.3 U mg−1), oat spelt xylan (67.9 U mg−1), and 2-hydroxyethyl-cellulose (26.3 U mg−1). Based on these findings, we believe that CelEx-BR12 is an efficient multifunctional enzyme as endocellulase/exocellulase/xylanase activities that may prove useful for biotechnological applications.  相似文献   
177.
Despite the extensive use of propofol in general anesthetic procedures, the effects of propofol on glial cell were not completely understood. In lipopolysaccharide (LPS)-stimulated rat primary astrocytes and BV2 microglial cell lines, co-treatment of propofol synergistically induced inflammatory activation as evidenced by the increased production of NO, ROS and expression of iNOS, MMP-9 and several cytokines. Propofol augmented the activation of JNK and p38 MAPKs induced by LPS and the synergistic activation of glial cells by propofol was prevented by pretreatment of JNK and p38 inhibitors. When we treated BV2 cell culture supernatants treated with LPS plus propofol on cultured rat primary neuron, it induced a significant neuronal cell death. The results suggest that the repeated use of propofol in immunologically challenged situation may induce glial activation in brain.  相似文献   
178.
To explore the physiological significance of N‐glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N‐acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N‐glycan maturation and accumulated high‐mannose N‐glycans. Phenotypic analyses revealed that gnt1 shows defective post‐seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark‐induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A‐type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N‐glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.  相似文献   
179.
We isolated 2,3-dihydroxy-4-methoxyacetophenone, a neuroprotective compound from Cynenchum paniculatum in our previous study.The present study was conducted to investigate the possible neuroprotective effect of 2,3-dihydroxy-4-methoxyacetophenone that has been previously isolated from Cynenchum paniculatum on hippocampal neuronal cell line, HT22 cells and its possible cognitive-enhancing effect on scopolamine-induced amnesia in mice.Neuroprotective effect against glutamate-induced neurotoxicity in HT22 cells was evaluated by MTT assay. Also, cognitive enhancing effect against scopolamine (1 mg/kg, ip) induced learning and memory deficit was measured by Morris water maze test. Oral administered of 2,3-dihydroxy-4-methoxyacetophenone (1, 10, 20, 40 and 50 mg/kg) to amnesic mice induced by scopolamine. In Morris water maze test, 2,3-dihydroxy-4-methoxyacetophenone (50 mg/kg) improved the impairment of spatial memory induced by scopolamine. 2,3-Dihydroxy-4-methoxyacetophenone protect HT22 cells on glutamate induced cell-death in a dose-dependent manner (EC50 value: 10.94 μM). Furthermore, 2,3-dihydroxy-4-methoxyacetophenone was found to inhibit [Ca2+] accumulation in HT22 cells and had antioxidantive activity. The results showed that 2,3-dihydroxy-4-methoxyacetophenone exert neuroprotective and cognitive-enhancing activities through its antioxidant activity. We suggest that 2,3-dihydroxy-4-methoxyacetophenone improves cognitive function and may be helpful for the treatment of Alzheimer’s disease.  相似文献   
180.
Tropical rainforests in South‐East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag‐based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south‐western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28–0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号