首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4226篇
  免费   297篇
  国内免费   6篇
  2023年   19篇
  2022年   44篇
  2021年   76篇
  2020年   41篇
  2019年   50篇
  2018年   108篇
  2017年   80篇
  2016年   131篇
  2015年   218篇
  2014年   233篇
  2013年   286篇
  2012年   313篇
  2011年   321篇
  2010年   186篇
  2009年   174篇
  2008年   224篇
  2007年   190篇
  2006年   220篇
  2005年   180篇
  2004年   174篇
  2003年   171篇
  2002年   152篇
  2001年   94篇
  2000年   98篇
  1999年   73篇
  1998年   33篇
  1997年   28篇
  1996年   27篇
  1995年   21篇
  1994年   30篇
  1993年   24篇
  1992年   44篇
  1991年   33篇
  1990年   31篇
  1989年   28篇
  1988年   21篇
  1987年   25篇
  1986年   17篇
  1985年   17篇
  1984年   17篇
  1983年   20篇
  1979年   18篇
  1977年   15篇
  1975年   16篇
  1974年   20篇
  1973年   17篇
  1972年   20篇
  1970年   13篇
  1969年   13篇
  1967年   13篇
排序方式: 共有4529条查询结果,搜索用时 15 毫秒
901.
902.
Previously, we have succeeded in converting induced pluripotent stem cells (iPSCs) into cancer stem cells (CSCs) by treating the iPSCs with conditioned medium of Lewis lung carcinoma (LLC) cells. The converted CSCs, named miPS-LLCcm cells, exhibited the self-renewal, differentiation potential, and potential to form malignant tumors with metastasis. In this study, we further characterized miPS-LLCcm cells both in vivo and in vitro. The tumors formed by subcutaneous injection showed the structures with pathophysiological features consisting of undifferentiated and malignant phenotypes generally found in adenocarcinoma. Metastasis in the lung was also observed as nodule structures. Excising from the tumors, primary cultured cells from the tumor and the nodule showed self-renewal, differentiation potential as well as tumor forming ability, which are the essential characters of CSCs. We then characterized the epigenetic regulation occurring in the CSCs. By comparing the DNA methylation level of CG rich regions, the differentially methylated regions (DMRs) were evaluated in all stages of CSCs when compared with the parental iPSCs. In DMRs, hypomethylation was found superior to hypermethylation in the miPS-LLCcm cells and its derivatives. The hypo- and hypermethylated genes were used to nominate KEGG pathways related with CSC. As a result, several categories were defined in the KEGG pathways from which most related with cancers, significant and high expression of components was PI3K-AKT signaling pathway. Simultaneously, the AKT activation was also confirmed in the CSCs. The PI3K-Akt signaling pathway should be an important pathway for the CSCs established by the treatment with conditioned medium of LLC cells.  相似文献   
903.
904.
905.
906.
907.
Skin Innervation and Its Effects on the Epidermis   总被引:2,自引:0,他引:2  
Sensory innervation of the skin subserves protective sensations for the body to prevent thermal and noxious injuries. Neurophysiologically, they belong to the categories of A and C fibers, usually with caliber less than one µm in diameter. Morphological demonstration of the terminals of these nerves in the epidermis has been recognized recently by sensitive immunocytochemistry and an axonal marker, the protein gene product 9.5 (PGP). PGP is a ubiquitin C-terminal hydrolase, which is abundantly present in the nervous system, and particularly enriched in the unmyelinated nerves. Sensory nerves positive for PGP arise from the dorsal root ganglion, pass through the dermis, parallel the epidermis-dermis border, penetrate the basement membrane, move vertically and upwards in the epidermis with tortuous course and knobby appearance, and finally terminate at the granular layers of the epidermis. In rodents, denervation of the skin results in degeneration of epidermal nerves within 48 h of nerve transection, and thinning of the epidermis. In humans, application of this technique to evaluate disorders of the peripheral nervous system makes study of the degeneration of sensory nerve terminals possible. Patients with sensory neuropathy had fewer epidermal nerves than normal subjects, consistent with the notion of distal axonopathy. This approach has the potential to evaluate human sensory neuropathy in temporal and spatial domains. In addition, the influences of epidermal denervation open a new field to explore the interactions between sensory nerves and keratinocytes.  相似文献   
908.
Members of the ABC transporter superfamily contain two nucleotide binding domains. To date, the three dimensional structure of no member of this super-family has been elucidated. To gain structural insight, the known structures of several other nucleotides binding proteins can be used as a framework for modeling these domains. We have modeled both nucleotide binding domains of the protein CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) using the two similar domains of mitochondrial F1-ATPase. The models obtained, provide useful insights into the putative functions of these domains and their possible interaction as well as a rationale for the basis of Cystic Fibrosis causing mutations. First, the two nucleotide binding domains (folds) of CFTR are each predicted to span a 240–250 amino acid sequence rather than the 150–160 amino acid sequence originally proposed. Second, the first nucleotide binding fold, is predicted to catalyze significant rates of ATP hydrolysis as a catalytic base (E504) resides near the phosphate of ATP. This prediction has been verified experimentally [Ko, Y.H., and Pedersen, P.L. (1995) J. Biol. Chem. 268, 24330-24338], providing support for the model. In contrast, the second nucleotide binding fold is predicted at best to be a weak ATPase as the glutamic acid residue is replaced with a glutamine. Third, F508, which when deleted causes 70% of all cases of cystic fibrosis, is predicted to lie in a cleft near the nucleotide binding pocket. All other disease causing mutations within the two nucleotide binding domains of CFTR either reside near the Walker A and Walker B consensus motifs in the heart of the nucleotide binding pocket, or in the C motif which lies outside but near the nucleotide binding pocket. Finally, the two nucleotide binding domains of CFTR are predicted to interact, and in one of the two predicted orientations, F508 resides near the interface.This is the first report where both nucleotide binding domains of an ABC transporter and their putative domain-domain interactions have been modeled in three dimensions. The methods and the template used in this work can be used to analyze the structures and function of the nucleotide binding domains of all other members of the ABC transporter super-family.  相似文献   
909.
Molecules localized to the synapse are potential contributors to processes unique to this specialized region, such as synapse formation and maintenance and synaptic transmission. We used an immunohistochemical strategy to uncover such molecules by generating antibodies that selectively stain synaptic regions and then using the antibodies to analyse their antigens. In this study, we utilized a monoclonal antibody, mAb 6D7, to identify and characterize an antigen concentrated at frog neuromuscular junctions and in peripheral nerves. In adult muscle, immunoelectron microscopy indicates that the antigen is located in the extracellular matrix around perisynaptic Schwann cells at the neuromuscular junction and in association with myelinated and nonmyelinated axons in peripheral nerves. The maintenance of the mAb 6D7 epitope is innervation-dependent but is muscle-independent; it disappears from the synaptic region within 2 weeks after denervation, but persists after muscle damage when the nerve is left intact. mAb 6D7 immunolabelling is also detected at the neuromuscular junction in developing tadpoles. Biochemical analyses of nerve extracts indicate that mAb 6D7 recognizes a glycoprotein of 127 kDa with both N- and O-linked carbohydrate moieties. Taken together, the results suggest that the antigen recognized by mAb 6D7 may be a novel component of the synaptic extracellular matrix overlying the terminal Schwann cell. The innervation-sensitivity of the epitope at the neuromuscular junction suggests a function in the interactions between nerves and Schwann cells.  相似文献   
910.
Changes in tissue glutathione antioxidant system in streptozotocin-induced diabetic rats for a period of 15 weeks were examined. Total glutathione level was significantly increased in kidney tissue, but were slightly decreased and increased in liver and heart tissues, respectively. The small changes in total glutathione level in the liver and heart, though not statistically significant, were associated with reciprocal alterations in the activity Of -glutamylcysteine synthetase (GCS). While the GCS activity was not changed in kidney tissue, the activity of -glutathione peroxidase was significantly increased in kidney tissue. Insulin treatment could completely or partly normalize almost all of these changes induced by diabetes. However, the decrease in hepatic glutathione S-transferases activity in diabetic rats was not reversed by the insulin treatment. The ensemble of results suggests that the diabetes-induced alterations in tissue glutathione antioxidant system may possibly reflect an inter-organ antioxidant response to a generalized increase in tissue oxidative stress associated with diabetes.Abbreviations AGES advanced glycosylation end-products - EDTA ethylenediamine tetraacetic acid - GCS -glutamylcysteine synthetase - GlyHb glycated hemoglobin - GPX Se-glutathione peroxidase - GRD glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - GST glutathione S-transferases - SSA sulfosalicylic acid - STZ streptozotocin  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号