首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   83篇
  2021年   10篇
  2020年   12篇
  2019年   10篇
  2018年   8篇
  2017年   16篇
  2016年   24篇
  2015年   34篇
  2014年   42篇
  2013年   49篇
  2012年   50篇
  2011年   60篇
  2010年   42篇
  2009年   51篇
  2008年   39篇
  2007年   53篇
  2006年   55篇
  2005年   45篇
  2004年   45篇
  2003年   46篇
  2002年   49篇
  2001年   12篇
  2000年   8篇
  1999年   7篇
  1998年   13篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1973年   4篇
  1972年   2篇
  1968年   2篇
  1967年   2篇
  1964年   2篇
  1956年   2篇
  1937年   2篇
排序方式: 共有929条查询结果,搜索用时 81 毫秒
171.
Plant litter is an important determinant of seed germination and seedling establishment. Positive effects of litter have received considerable attention, but few studies have explicitly tested whether seedlings are more facilitated by conspecific litter compared to heterospecific litter. In order to contrast conspecific and heterospecific facilitative effects on seedling establishment, we used Anthriscus sylvestris, Angelica sylvestris, Pimpinella saxifraga and different combinations of their seeds and litter seedbeds as a model system. Although litter had a significant species-specific effect on seedling emergence, we found no evidence of strictly conspecific facilitation. Anthriscus sylvestris displayed a positive response to all types of litter. In contrast, there was a clear negative effect of conspecific litter in Pimpinella saxifraga. Activated carbon did not modify the negative effect, indicating that chemical compounds were not the cause. Our study suggests a high level of idiosyncrasy in response to litter at the species level.  相似文献   
172.
173.
174.
Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the mechanisms by which PAT family members, perilipin A, adipose differentiation-related protein (ADFP), and LSDP5, control lipolysis catalyzed by hormone-sensitive lipase (HSL), a major lipase in adipocytes and several non-adipose cells. We applied fluorescence microscopic tools to analyze proteins in situ in cultured Chinese hamster ovary cells using fluorescence recovery after photobleaching and anisotropy Forster resonance energy transfer. Fluorescence recovery after photobleaching data show that ADFP and LSDP5 exchange between lipid droplet and cytoplasmic pools, whereas perilipin A does not. Differences in protein mobility do not correlate with PAT protein-mediated control of lipolysis catalyzed by HSL or endogenous lipases. Forster resonance energy transfer and co-immunoprecipitation experiments reveal that each of the three PAT proteins bind HSL through interaction of the lipase with amino acids within the highly conserved amino-terminal PAT-1 domain. ADFP and LSDP5 bind HSL under basal conditions, whereas phosphorylation of serine residues within three amino-terminal protein kinase A consensus sequences of perilipin A is required for HSL binding and maximal lipolysis. Finally, protein kinase A-mediated phosphorylation of HSL increases lipolysis in cells expressing ADFP or LSDP5; in contrast, phosphorylation of perilipin A exerts the major control over HSL-mediated lipolysis when perilipin is the main lipid droplet protein.  相似文献   
175.
The cAMP-dependent protein kinase (PKA I and II) and the cAMP-stimulated GDP exchange factors (Epac1 and -2) are major cAMP effectors. The cAMP affinity of the PKA holoenzyme has not been determined previously. We found that cAMP bound to PKA I with a K(d) value (2.9 microM) similar to that of Epac1. In contrast, the free regulatory subunit of PKA type I (RI) had K(d) values in the low nanomolar range. The cAMP sites of RI therefore appear engineered to respond to physiological cAMP concentrations only when in the holoenzyme form, whereas Epac can respond in its free form. Epac is phylogenetically younger than PKA, and its functional cAMP site has presumably evolved from site B of PKA. A striking feature is the replacement of a conserved Glu in PKA by Gln (Epac1) or Lys (Epac2). We found that such a switch (E326Q) in site B of human RIalpha led to a 280-fold decreased cAMP affinity. A similar single switch early in Epac evolution could therefore have decreased the high cAMP affinity of the free regulatory subunit sufficiently to allow Epac to respond to physiologically relevant cAMP levels. Molecular dynamics simulations and cAMP analog mapping indicated that the E326Q switch led to flipping of Tyr-373, which normally stacks with the adenine ring of cAMP. Combined molecular dynamics simulation, GRID analysis, and cAMP analog mapping of wild-type and mutated BI and Epac1 revealed additional differences, independent of the Glu/Gln switch, between the binding sites, regarding space (roominess), hydrophobicity/polarity, and side chain flexibility. This helped explain the specificity of current cAMP analogs and, more importantly, lays a foundation for the generation of even more discriminative analogs.  相似文献   
176.
A dynamic mathematical model was developed to describe the uptake of various carbohydrates (glucose, lactose, glycerol, sucrose, and galactose) in Escherichia coli. For validation a number of isogenic strains with defined mutations were used. By considering metabolic reactions as well as signal transduction processes influencing the relevant pathways, we were able to describe quantitatively the phenomenon of catabolite repression in E. coli. We verified model predictions by measuring time courses of several extra- and intracellular components such as glycolytic intermediates, EII-ACrr phosphorylation level, both LacZ and PtsG concentrations, and total cAMP concentrations under various growth conditions. The entire data base consists of 18 experiments performed with nine different strains. The model describes the expression of 17 key enzymes, 38 enzymatic reactions, and the dynamic behavior of more than 50 metabolites. The different phenomena affecting the phosphorylation level of EIIACrr, the key regulation molecule for inducer exclusion and catabolite repression in enteric bacteria, can now be explained quantitatively.  相似文献   
177.

Background

Epidemiological studies have shown a J- or U-shaped relation between alcohol and type 2 diabetes and coronary heart disease (CHD). The underlying mechanisms are not clear. The aim was to examine the association between alcohol intake and diabetes and intermediate CHD risk factors in relation to selected ADH and ALDH gene variants.

Methodology/Principal Findings

Cross-sectional study including 6,405 Northern European men and women aged 30–60 years from the general population of Copenhagen, Denmark. Data were collected with self-administered questionnaires, a physical examination, a 2 hour oral glucose tolerance test, and various blood tests. J shaped associations were observed between alcohol and diabetes, metabolic syndrome (MS), systolic and diastolic blood pressure, triglyceride, total cholesterol, and total homocysteine. Positive associations were observed with insulin sensitivity and HDL cholesterol, and a negative association with insulin release. Only a few of the selected ADH and ALDH gene variants was observed to have an effect. The ADH1c (rs1693482) fast metabolizing CC genotype was associated with an increased risk of impaired glucose tolerance (IGT)/diabetes compared to the CT and TT genotypes. Significant interactions were observed between alcohol and ADH1b (rs1229984) with respect to LDL and between alcohol and ALDH2 (rs886205) with respect to IGT/diabetes.

Conclusions/Significance

The selected ADH and ALDH gene variants had only minor effects, and did not seem to markedly modify the health effects of alcohol drinking. The observed statistical significant associations would not be significant, if corrected for multiple testing.  相似文献   
178.
179.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and mediates intracellular degradation of the LDLR. The amino-terminus of mature PCSK9, residues 31–53 of the prodomain, has an inhibitory effect on this function of PCSK9, but the underlying mechanism is not fully understood. In this study, we have identified two highly conserved negatively charged segments (residues 32–40 and 48–50, respectively) within this part of the prodomain and performed deletions and substitutions to study their importance for degradation of the LDLRs.Deletion of the acidic residues of the longest negatively charged segment increased PCSK9’s ability to degrade the LDLR by 31%, whereas a modest 8% increase was observed when these residues were mutated to uncharged amino acids. Thus, both the length and the charge of this part of the prodomain were important for its inhibitory effect. Deletion of the residues of the shorter second negatively charged segment only increased PCSK9’s activity by 8%. Substitution of the amino acids of both charged segments to uncharged residues increased PCSK9’s activity by 36%. These findings indicate that the inhibitory effect of residues 31–53 of the prodomain is due to the negative charge of this segment. The underlying mechanism could involve the binding of this peptide segment to positively charged structures which are important for PCSK9’s activity. One possible candidate could be the histidine-rich C-terminal domain of PCSK9.  相似文献   
180.
Local anesthetics (LAs) are drugs that cause reversible loss of nociception during surgical procedures. Articaine is a commonly used LA in dentistry that has proven to be exceptionally effective in penetrating bone tissue and induce anesthesia on posterior teeth in maxilla and mandibula. In the present study, our aim was to gain a deeper understanding of the penetration of articaine through biological membranes by studying the interactions of articaine with a phospholipid membrane. Our approach involves Langmuir monolayer experiments combined with molecular dynamics simulations. Membrane permeability of LAs can be modulated by pH due to a titratable amine group with a pKa value close to physiological pH. A change in protonation state is thus known to act as a lipophilicity switch in LAs. Our study shows that articaine has an additional unique lipophilicity switch in its ability to form an intramolecular hydrogen bond. We suggest this intramolecular hydrogen bond as a novel and additional solvent-dependent mechanism for modulation of lipophilicity of articaine which may enhance its diffusion through membranes and connective tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号