首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   95篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   15篇
  2019年   11篇
  2018年   14篇
  2017年   22篇
  2016年   28篇
  2015年   40篇
  2014年   51篇
  2013年   63篇
  2012年   65篇
  2011年   74篇
  2010年   50篇
  2009年   57篇
  2008年   43篇
  2007年   71篇
  2006年   58篇
  2005年   51篇
  2004年   49篇
  2003年   56篇
  2002年   55篇
  2001年   21篇
  2000年   15篇
  1999年   11篇
  1998年   15篇
  1997年   9篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   11篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1973年   6篇
  1972年   3篇
  1938年   2篇
  1937年   3篇
排序方式: 共有1122条查询结果,搜索用时 218 毫秒
101.
102.
Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G3 animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.  相似文献   
103.
Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r(+/-), and Igf1r(-/-) genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r(+/-) and Igf1r(-/-) mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis.  相似文献   
104.
Long-wavelength absorbing labels that change their color and fluorescence upon conjugation to proteins and other biomolecules provide two critical advantages over the wealth of conventional amine-reactive labels. At first, the progress of the labeling reaction can be monitored continuously either visually or by spectrometry without prior purification. Then, the labeled biomolecule can be investigated with red or near-infrared light, which minimizes background interference in biological samples. These unique characteristics are met by a group of long-wavelength absorbing cyanine dyes carrying a reactive chloro substituent for nucleophilic substitution with primary amines, which is accompanied by a color change from green to blue. In addition to this so-called chameleon effect, the dyes display an increase in fluorescence during the labeling reaction. Despite their structural similarity, the reactivity of the dyes differs strongly. The fastest labeling kinetics is observed with dye S 0378 as its five-membered ring affords a stabilizing effect on the intermediate carbocation during an S(N)1-type of nucleophilic substitution. The reaction mechanism of the amine-reactive cyanine dyes provides a blueprint for the design of future long-wavelength absorbing chameleon dyes.  相似文献   
105.
Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.  相似文献   
106.
107.
Becher D  Büttner K  Moche M  Hessling B  Hecker M 《Proteomics》2011,11(15):2971-2980
Owing to the low number of proteins necessary to render a bacterial cell viable, bacteria are extremely attractive model systems to understand how the genome sequence is translated into actual life processes. One of the most intensively investigated model organisms is Bacillus subtilis. It has attracted world-wide research interest, addressing cell differentiation and adaptation on a molecular scale as well as biotechnological production processes. Meanwhile, we are looking back on more than 25 years of B. subtilis proteomics. A wide range of methods have been developed during this period for the large-scale qualitative and quantitative proteome analysis. Currently, it is possible to identify and quantify more than 50% of the predicted proteome in different cellular subfractions. In this review, we summarize the development of B. subtilis proteomics during the past 25 years.  相似文献   
108.

Background

The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B.

Methodology/Principal Findings

As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212–216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers.

Conclusions/Significance

Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B'' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation.  相似文献   
109.

Background

Deterioration of executive functions in the elderly has been associated with impairments in walking performance. This may be caused by limited cognitive flexibility and working memory, but could also be caused by altered prioritization of simultaneously performed tasks. To disentangle these options we investigated the associations between Trail Making Test performance—which specifically measures cognitive flexibility and working memory—and dual task costs, a measure of prioritization.

Methodology and Principal Findings

Out of the TREND study (Tuebinger evaluation of Risk factors for Early detection of Neurodegenerative Disorders), 686 neurodegeneratively healthy, non-demented elderly aged 50 to 80 years were classified according to their Trail Making Test performance (delta TMT; TMT-B minus TMT-A). The subjects performed 20 m walks with habitual and maximum speed. Dual tasking performance was tested with walking at maximum speed, in combination with checking boxes on a clipboard, and subtracting serial 7 s at maximum speeds. As expected, the poor TMT group performed worse when subtracting serial 7 s under single and dual task conditions, and they walked more slowly when simultaneously subtracting serial 7 s, compared to the good TMT performers. In the walking when subtracting serial 7 s condition but not in the other 3 conditions, dual task costs were higher in the poor TMT performers (median 20%; range −6 to 58%) compared to the good performers (17%; −16 to 43%; p<0.001). To the contrary, the proportion of the poor TMT performance group that made calculation errors under the dual tasking situation was lower than under the single task situation, but higher in the good TMT performance group (poor performers, −1.6%; good performers, +3%; p = 0.035).

Conclusion

Under most challenging conditions, the elderly with poor TMT performance prioritize the cognitive task at the expense of walking velocity. This indicates that poor cognitive flexibility and working memory are directly associated with altered prioritization.  相似文献   
110.

Background

Micro-CT imaging of liver disease in mice relies on high soft tissue contrast to detect small lesions like liver metastases. Purpose of this study was to characterize the localization and time course of contrast enhancement of a nanoparticular alkaline earth metal-based contrast agent (VISCOVER ExiTron nano) developed for small animal liver CT imaging.

Methodology

ExiTron nano 6000 and ExiTron nano 12000, formulated for liver/spleen imaging and angiography, respectively, were intravenously injected in C57BL/6J-mice. The distribution and time course of contrast enhancement were analysed by repeated micro-CT up to 6 months. Finally, mice developing liver metastases after intrasplenic injection of colon carcinoma cells underwent longitudinal micro-CT imaging after a single injection of ExiTron nano.

Principal Findings

After a single injection of ExiTron nano the contrast of liver and spleen peaked after 4–8 hours, lasted up to several months and was tolerated well by all mice. In addition, strong contrast enhancement of abdominal and mediastinal lymph nodes and the adrenal glands was observed. Within the first two hours after injection, particularly ExiTron nano 12000 provided pronounced contrast for imaging of vascular structures. ExiTron nano facilitated detection of liver metastases and provided sufficient contrast for longitudinal observation of tumor development over weeks.

Conclusions

The nanoparticulate contrast agents ExiTron nano 6000 and 12000 provide strong contrast of the liver, spleen, lymph nodes and adrenal glands up to weeks, hereby allowing longitudinal monitoring of pathological processes of these organs in small animals, with ExiTron nano 12000 being particularly optimized for angiography due to its very high initial vessel contrast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号