首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   81篇
  925篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   12篇
  2019年   10篇
  2018年   8篇
  2017年   16篇
  2016年   24篇
  2015年   33篇
  2014年   42篇
  2013年   49篇
  2012年   50篇
  2011年   60篇
  2010年   42篇
  2009年   51篇
  2008年   39篇
  2007年   53篇
  2006年   54篇
  2005年   44篇
  2004年   45篇
  2003年   46篇
  2002年   49篇
  2001年   12篇
  2000年   6篇
  1999年   7篇
  1998年   13篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1973年   4篇
  1967年   2篇
  1964年   2篇
  1956年   2篇
  1937年   2篇
排序方式: 共有925条查询结果,搜索用时 15 毫秒
21.
Osteosarcoma (OS) is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA), is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types. Here, we investigated the effects of stable shRNA-mediated silencing of CD44 gene products on in vitro and in vivo metastatic properties of the highly metastatic human 143-B OS cell line. In vitro, CD44 knockdown resulted in a 73% decrease in the adhesion to HA, a 57% decrease in the migration rate in a trans-filter migration assay, and a 28% decrease in the cells'' capacity for anchorage-independent growth in soft agar compared to the control cells, implicating that CD44 expression contributes to the metastatic activity of 143-B cells. However, making use of an orthotopic xenograft OS mouse model, we demonstrated that reduced CD44 expression facilitated primary tumor growth and formation of pulmonary metastases. The enhanced malignant phenotype was associated with decreased adhesion to HA and reduced expression of the tumor suppressor merlin in vivo. In conclusion, our study identified CD44 as a metastasis suppressor in this particular experimental OS model.  相似文献   
22.
23.
In this study, we explore the potential to reconstruct lake-level (and groundwater) fluctuations from tree-ring chronologies of black alder (Alnus glutinosa L.) for three study lakes in the Mecklenburg Lake District, northeastern Germany. As gauging records for lakes in this region are generally short, long-term reconstructions of lake-level fluctuations could provide valuable information on past hydrological conditions, which, in turn, are useful to assess dynamics of climate and landscape evolution. We selected black alder as our study species as alder typically thrives as riparian vegetation along lakeshores. For the study lakes, we tested whether a regional signal in lake-level fluctuations and in the growth of alder exists that could be used for long-term regional hydrological reconstructions, but found that local (i.e. site-specific) signals in lake level and tree-ring chronologies prevailed. Hence, we built lake/groundwater-level reconstruction models for the three study lakes individually. Two sets of models were considered based on (1) local tree-ring series of black alder, and (2) site-specific Standardized Precipitation Evapotranspiration Indices (SPEI). Although the SPEI-based models performed statistically well, we critically reflect on the reliability of these reconstructions, as SPEI cannot account for human influence. Tree-ring based reconstruction models, on the other hand, performed poor. Combined, our results suggest that, for our study area, long-term regional reconstructions of lake-level fluctuations that consider both recent and ancient (e.g., archaeological) wood of black alder seem extremely challenging, if not impossible.  相似文献   
24.
The generalized Shwartzman reaction, or Shwartzman-like conditions, were induced in a variety of experimental mammalian species by systemic injections of disintegrated cells of Gram negative bacteria, live Salmonella cholerae-suis or Liquoid. A comparative study of the renal lesions showed that the initial step in the development of bilateral cortical necrosis is stagnation and disintegration of red cells in glomerular capillaries. The glomerular “microthrombi” consist mainly of erythrocytic debris, which frequently has staining properties akin to those of fibrin; even wide-spread glomerular “thrombosis” is not accompanied by obvious destruction of renal parenchyma. A second step is necrotic mural lesions in afferent arteries, with ensuing thrombosis. These vascular lesions lead to the formation of individual infarcts which fuse to form total bilateral cortical necrosis in fulminant cases of the generalized Shwartzman reaction.  相似文献   
25.
Posttranslational modification of Ag is implicated in several autoimmune diseases. In celiac disease, a cereal gluten-induced enteropathy with several autoimmune features, T cell recognition of the gluten Ag is heavily dependent on the posttranslational conversion of Gln to Glu residues. Evidence suggests that the enhanced recognition of deamidated gluten peptides results from improved peptide binding to the MHC and TCR interaction with the peptide-MHC complex. In this study, we report that there is a biased usage of TCR Vβ6.7 chain among TCRs reactive to the immunodominant DQ2-α-II gliadin epitope. We isolated Vβ6.7 and DQ2-αII tetramer-positive CD4(+) T cells from peripheral blood of gluten-challenged celiac patients and sequenced the TCRs of a large number of single T cells. TCR sequence analysis revealed in vivo clonal expansion, convergent recombination, semipublic response, and the notable conservation of a non-germline-encoded Arg residue in the CDR3β loop. Functional testing of a prototype DQ2-α-II-reactive TCR by analysis of TCR transfectants and soluble single-chain TCRs indicate that the deamidated residue in the DQ2-α-II peptide poses constraints on the TCR structure in which the conserved Arg residue is a critical element. The findings have implications for understanding T cell responses to posttranslationally modified Ags.  相似文献   
26.
Ras is a major mediator of PE (phorbol ester) effects in mammalian cells. Various mechanisms for PE activation of Ras have been reported [Downward, Graves, Warne, Rayter and Cantrell (1990) Nature (London) 346, 719-723; Shu, Wu, Mosteller and Broek (2002) Mol. Cell. Biol. 22, 7758-7768; Roose, Mollenauer, Gupta, Stone and Weiss (2005) Mol. Cell. Biol. 25, 4426-4441; Grosse, Roelle, Herrlich, H?hn and Gudermann (2000) J. Biol. Chem. 275, 12251-12260], including pathways that target GAPs (GTPase-activating proteins) for inactivation and those that result in activation of GEFs (guanine nucleotide-exchange factors) Sos (son of sevenless homologue) or RasGRP (RAS guanyl releasing protein). However, a biochemical link between PE and GAP inactivation is missing and GEF stimulation is hard to reconcile with the observation that dominant-negative S17N-Ras does not compromise Ras-dependent ERK (extracellular-signal-regulated kinase) activation by PE. We have addressed this controversy and carried out an in-depth biochemical study of PE-induced Ras activation in COS-7 cells. Using a cell-permeabilization approach to monitor nucleotide exchange on Ras, we demonstrate that PE-induced Ras-GTP accumulation results from GEF stimulation. Nucleotide exchange stimulation by PE is prevented by PKC (protein kinase C) inhibition but not by EGFR [EGF (epidermal growth factor) receptor] blockade, despite the fact that EGFR inhibition aborts basal and PE-induced Shc (Src homology and collagen homology) phosphorylation and Shc-Grb2 (growth-factor-receptor-bound protein 2) association. In fact, EGFR inhibition ablates basal nucleotide exchange on Ras in growth-arrested COS-7 cells. These data disclose the existence of two separate GEF systems that operate independently from each other to accomplish PE-dependent formation of Ras-GTP and to maintain resting Ras-GTP levels respectively. We document that COS-7 cells do not express RasGRP and present evidence that the PE-responsive GEF system may involve PKC-dependent phosphorylation of Sos. More fundamentally, these observations shed new light on enigmatic issues such as the inefficacy of S17N-Ras in blocking PE action or the role of the EGFR in heterologous agonist activation of the Ras/ERK pathway.  相似文献   
27.
28.
ERK3 and ERK4 are atypical MAPKs in which the canonical TXY motif within the activation loop of the classical MAPKs is replaced by SEG. Both ERK3 and ERK4 bind, translocate, and activate the MAPK-activated protein kinase (MK) 5. The classical MAPKs ERK1/2 and p38 interact with downstream MKs (RSK1–3 and MK2–3, respectively) through conserved clusters of acidic amino acids, which constitute the common docking (CD) domain. In contrast to the classical MAPKs, the interaction between ERK3/4 and MK5 is strictly dependent on phosphorylation of the SEG motif of these kinases. Here we report that the conserved CD domain is dispensable for the interaction of ERK3 and ERK4 with MK5. Using peptide overlay assays, we have defined a novel MK5 interaction motif (FRIEDE) within both ERK4 and ERK3 that is essential for binding to the C-terminal region of MK5. This motif is located within the L16 extension lying C-terminal to the CD domain in ERK3 and ERK4 and a single isoleucine to lysine substitution in FRIEDE totally abrogates binding, activation, and translocation of MK5 by both ERK3 and ERK4. These findings are the first to demonstrate binding of a physiological substrate via this region of the L16 loop in a MAPK. Furthermore, the link between activation loop phosphorylation and accessibility of the FRIEDE interaction motif suggests a switch mechanism for these atypical MAPKs in which the phosphorylation status of the activation loop regulates the ability of both ERK3 and ERK4 to bind to a downstream effector.Mitogen-activated protein kinase (MAPK)2 phosphorylation cascades play important roles in the regulation of diverse cellular functions such as cell proliferation, differentiation, migration, and apoptosis (1, 2). A characteristic and conserved feature of this family of signaling pathways is their organization into modules comprising a sequential three-tiered kinase cascade. This contains a MAPK kinase kinase, a MEK, and the MAPK itself. Four such MAPK signaling modules have been described in mammals: ERK1 and ERK2, the c-Jun N-terminal kinases 1–3, the p38 kinases (p38α/β/γ/δ), and ERK5 (37). The MAPK kinase kinases phosphorylate and activate the MEKs, which in turn activate the MAPKs by dual phosphorylation on both the threonine and the tyrosine residue of a highly conserved TXY motif in the kinase activation loop. MAPKs are Ser/Thr kinases, which phosphorylate a wide range of substrates with the minimal consensus sequence (S/T)P (2).ERK4 and its close relative ERK3 are regarded as atypical members of the MAPK family. In contrast to the classical MAPKs, ERK3 and ERK4 harbor an SEG motif in the activation loop and thus lack a second phosphoacceptor site. In addition, protein kinases all possess a conserved APE motif located just C-terminal to the phosphoacceptor sites within subdomain VIII, in which the conserved glutamate is important for maintaining the stability of the kinase domain. In both ERK3 and ERK4, this motif is substituted by SPR, and ERK3 and ERK4 are the only two protein kinases in the human genome with an arginine residue in this position (8). Although they display significant sequence homology (44% identity) with ERK1 and ERK2 within their kinase domains, both ERK3 and ERK4 have unique C-terminal extensions, which account for the large differences in size observed between ERK1/2 (∼360 amino acids) and ERK3/ERK4 (721/587 amino acids). Whereas classical MAPKs have been highly conserved throughout evolution, with examples found in both unicellular and multicellular organisms, ERK3 and ERK4 are only present in vertebrates. Finally, in contrast to many of the classical MAPKs, the regulation, substrate specificity, and physiological functions of ERK3 and ERK4 are poorly understood. Although ERK3 and ERK4 are very similar to each other, there are significant differences between them. For instance, whereas ERK4, like most classical MAPKs, is a stable protein, ERK3 is highly unstable and subject to rapid proteosomal degradation. Thus, ERK3 activity may be regulated at the level of cellular abundance, and taken together these features indicate that ERK3 and ERK4 may perform specialized functions and enjoy different modes of regulation when compared with classical MAPKs (911).Despite the striking differences between ERK3 and ERK4 and the classical MAPKs, they do share one property with the ERK1/2, p38, and ERK5, namely the ability to interact with a group of downstream Ser/Thr protein kinases, termed MAPK-activated protein kinases (MAPKAPKs or MKs) (12, 13). In the case of ERK3 and ERK4, both proteins interact with, translocate, and activate the MK5 protein kinase. Several studies have drawn attention to the role of specific docking interactions that contribute to both substrate selectivity and regulation in MAPK pathways (1417). These interactions involve docking domains, which specifically recognize small peptide docking motifs (D motifs) located on functional MAPK partner proteins including downstream substrates, scaffold proteins, as well as positive and negative regulators. The docking domains, although located within the kinase domains, are distinct from the active site. Similarly the D motifs, which these docking domains recognize, are also distinct from the phosphoacceptor sites within protein substrates (18). There are several classes of D motifs. The motifs found in MAPKAP kinases including MK5 have the consensus sequence LX1–2(K/R)2–5 where X is any amino acid (12). The corresponding docking domains within the MAPKs have also been characterized (16, 19, 20). The common docking (CD) domain is a cluster of negatively charged amino acids located in the L16 extension directly C-terminal to the kinase domain in the MAPK primary structure. A second domain termed ED (Glu-Asp) also contributes to binding specificity. This latter site is located near the CD domain in the MAPK tertiary structure. Whereas the CD domain is considered commonly important for all docking interactions, the ED site is thought to be important for the determination of specificity (16). Other residues and regions distinct from the ED and CD domains have also been shown to be important for docking.(2125).This work has so far been largely confined to analysis of the classical MAPKs, and much less is known about the nature of substrate or regulatory docking interactions for the atypical MAPKs. We and others (9, 11, 26) have recently reported that the region encompassing residues 326–340 within both ERK3 and ERK4 is required for their ability to interact with and activate MK5. Furthermore, a truncated mutant of MK5, which lacks the 50 C-terminal residues (MK5 1–423), was unable to bind to ERK4 despite the fact that it retains its D domain. Finally, in contrast to conventional MAPKs, the interaction between ERK3 and ERK4 and MK5 requires activation loop phosphorylation of ERK3 and ERK4 (27, 28). Taken together these observations suggest that the mechanism by which the atypical MAPKs recognize and bind to at least one important class of effector kinases may be distinct to that found in the classical MAPKs such as ERK1/2 and p38.Here we demonstrate that two separate C-terminal regions, encompassing residues 383–393 and 460–465, respectively, are necessary for MK5 to interact with both ERK3 and ERK4. These regions are distinct from the D motif previously identified within MK5, suggesting that binding to ERK3 and ERK4 may be mediated by a different mechanism to that seen in the classical MAPKs. In support of this, the conserved CD domains within ERK3 and ERK4 are shown to be completely dispensable for MK5 interaction. Using peptide overlay assays, we have defined a minimal MK5 interaction motif FRIEDE in ERK4. Furthermore, we demonstrate that a single point mutation (ERK3 I334K or ERK4 I330K) within this FRIEDE motif is sufficient to disrupt the binding of both ERK3 and ERK4 to MK5 and consequently their ability to both translocate and activate MK5. The FRIEDE motif is located within the L16 extension C-terminal to the CD domain in both ERK3 and ERK4. Interestingly, molecular modeling of the corresponding region in ERK2 suggests that it undergoes a significant conformational change as a result of activation loop phosphorylation, making this part of the L16 extension more accessible (29). We propose that the FRIEDE motif represents a novel MAPK interaction motif, the function of which is linked to activation loop phosphorylation and MAPK activation.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号