首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   88篇
  2021年   8篇
  2018年   11篇
  2017年   15篇
  2016年   13篇
  2015年   24篇
  2014年   28篇
  2013年   42篇
  2012年   56篇
  2011年   47篇
  2010年   30篇
  2009年   26篇
  2008年   39篇
  2007年   39篇
  2006年   35篇
  2005年   31篇
  2004年   34篇
  2003年   35篇
  2002年   39篇
  2001年   27篇
  2000年   25篇
  1999年   24篇
  1998年   25篇
  1997年   12篇
  1996年   13篇
  1995年   15篇
  1994年   13篇
  1993年   9篇
  1992年   17篇
  1991年   18篇
  1990年   17篇
  1989年   20篇
  1988年   17篇
  1987年   15篇
  1986年   18篇
  1985年   26篇
  1984年   12篇
  1983年   8篇
  1982年   10篇
  1981年   14篇
  1980年   12篇
  1979年   8篇
  1977年   12篇
  1975年   9篇
  1973年   13篇
  1972年   10篇
  1971年   16篇
  1970年   19篇
  1968年   7篇
  1967年   7篇
  1966年   9篇
排序方式: 共有1113条查询结果,搜索用时 15 毫秒
41.
The fluorescence from a purified, aggregate form of the light-harvesting chlorophyll a/b protein has a lifetime of 1.2 +/- 0.5 ns at low excitation intensity, but the lifetime decreases significantly when the intensity of the 20-ps, 530-nm excitation pulse is increased above about 10(16) photons/cm2. A solubilized, monomeric form of the protein, on the other hand, has a fluorescence lifetime of 3.1 +/- 0.3 ns independent of excitation intensity from 10(14)-10(18) photons/cm2/pulse. We interpret the lifetime shortening in the aggregates and the lack of shortening in monomers in terms of exciton annihilation, facilitated in the aggregate by the larger population of interacting chlorophylls.  相似文献   
42.
The human malarial parasite, Plasmodium falciparum, incorporated significant radioactivity into glycoconjugates when cultured in the presence of [14C]- or [3H]glucosamine for 48 to 50 hr. Digestion of the labeled proteins with pronase and subsequent precipitation with absolute ethanol showed that 90 to 95% of the radioactive glucosamine was incorporated into the precipitated material. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labeled macromolecules revealed eight bands with approximate molecular weights from 19,000 to 90,000 daltons.  相似文献   
43.
44.
The kidney has several characteristics which make renal pressures and fluid dynamics unique when compared to other organs. Renal blood flow is roughly 100 times that of skeletal muscle. The renal circulation consists of two distinct capillary beds in series: a high pressure system in the glomerulus that favors filtration and a low pressure system in the peritubule network that favors reabsorption. The hydrostatic pressure in the glomerular capillary is 4-6 times higher than the hydrostatic pressure in the peritubule capillary so that approximately 25% of the plasma is filtered. The bulk of the filtrate is subsequently reabsorbed by the peritubule capillary network. Micropuncture techniques have been used to obtain quantitative measurements of the pressures and fluid dynamics of the peritubule microcirculation. The net force for uptake of all the fluid reabsorbed by a single proximal tubule up to the point of micropuncture is 21 mm Hg acting over a capillary bed with a permeability surface area product of 2 nl/min per mm Hg. In contrast to subcutaneous tissue and muscle, the renal interstitial fluid pressure is positive. The consequence of a positive interstitial fluid pressure is that normal lymph flow is relatively high and changes in interstitial fluid pressure have relatively little effects on lymph flow.  相似文献   
45.
The rod outer segment (OS), comprised of tightly stacked disk membranes packed with rhodopsin, is in a dynamic equilibrium governed by a diurnal rhythm with newly synthesized membrane inserted at the OS base balancing membrane loss from the distal tip via disk shedding. Using transgenic Xenopus and live cell confocal imaging, we found OS axial variation of fluorescence intensity in cells expressing a fluorescently tagged rhodopsin transgene. There was a light synchronized fluctuation in intensity, with higher intensity in disks formed at night and lower intensity for those formed during the day. This fluctuation was absent in constant light or dark conditions. There was also a slow modulation of the overall expression level that was not synchronized with the lighting cycle or between cells in the same retina. The axial variations of other membrane-associated fluorescent proteins, eGFP-containing two geranylgeranyl acceptor sites and eGFP fused to the transmembrane domain of syntaxin, were greatly reduced or not detectable, respectively. In acutely light-adapted rods, an arrestin-eGFP fusion protein also exhibited axial variation. Both the light-sensitive Rho-eGFP and arrestin-eGFP banding were in phase with the previously characterized birefringence banding (Kaplan, Invest. Ophthalmol. Vis. Sci. 21, 395–402 1981). In contrast, endogenous rhodopsin did not exhibit such axial variation. Thus, there is an axial inhomogeneity in membrane composition or structure, detectable by the rhodopsin transgene density distribution and regulated by the light cycle, implying a light-regulated step for disk assembly in the OS. The impact of these results on the use of chimeric proteins with rhodopsin fused to fluorescent proteins at the carboxyl terminus is discussed.  相似文献   
46.
47.
Elevated atmospheric carbon dioxide (eCO2) is predicted to increase growth rates of forest trees. The extent to which increased growth translates to changes in biomass is dependent on the turnover time of the carbon, and thus tree mortality rates. Size‐ or age‐dependent mortality combined with increased growth rates could result in either decreased carbon turnover from a speeding up of tree life cycles, or increased biomass from trees reaching larger sizes, respectively. However, most vegetation models currently lack any representation of size‐ or age‐dependent mortality and the effect of eCO2 on changes in biomass and carbon turnover times is thus a major source of uncertainty in predictions of future vegetation dynamics. Using a reduced‐complexity form of the vegetation demographic model the Functionally Assembled Terrestrial Ecosystem Simulator to simulate an idealised tropical forest, we find increases in biomass despite reductions in carbon turnover time in both size‐ and age‐dependent mortality scenarios in response to a hypothetical eCO2‐driven 25% increase in woody net primary productivity (wNPP). Carbon turnover times decreased by 9.6% in size‐dependent mortality scenarios due to a speeding up of tree life cycles, but also by 2.0% when mortality was age‐dependent, as larger crowns led to increased light competition. Increases in aboveground biomass (AGB) were much larger when mortality was age‐dependent (24.3%) compared with size‐dependent (13.4%) as trees reached larger sizes before death. In simulations with a constant background mortality rate, carbon turnover time decreased by 2.1% and AGB increased by 24.0%, however, absolute values of AGB and carbon turnover were higher than in either size‐ or age‐dependent mortality scenario. The extent to which AGB increases and carbon turnover decreases will thus depend on the mechanisms of large tree mortality: if increased size itself results in elevated mortality rates, then this could reduce by about half the increase in AGB relative to the increase in wNPP.  相似文献   
48.
Reflooding formerly drained peatlands has been proposed as a means to reduce losses of organic matter and sequester soil carbon for climate change mitigation, but a renewal of high methane emissions has been reported for these ecosystems, offsetting mitigation potential. Our ability to interpret observed methane fluxes in reflooded peatlands and make predictions about future flux trends is limited due to a lack of detailed studies of methanogenic processes. In this study we investigate methanogenesis in a reflooded agricultural peatland in the Sacramento Delta, California. We use the stable‐and radio‐carbon isotopic signatures of wetland sediment methane, ecosystem‐scale eddy covariance flux observations, and laboratory incubation experiments, to identify which carbon sources and methanogenic production pathways fuel methanogenesis and how these processes are affected by vegetation and seasonality. We found that the old peat contribution to annual methane emissions was large (~30%) compared to intact wetlands, indicating a biogeochemical legacy of drainage. However, fresh carbon and the acetoclastic pathway still accounted for the majority of methanogenesis throughout the year. Although temperature sensitivities for bulk peat methanogenesis were similar between open‐water (Q10 = 2.1) and vegetated (Q10 = 2.3) soils, methane production from both fresh and old carbon sources showed pronounced seasonality in vegetated zones. We conclude that high methane emissions in restored wetlands constitute a biogeochemical trade‐off with contemporary carbon uptake, given that methane efflux is fueled primarily by fresh carbon inputs.  相似文献   
49.
Since the discovery that Δ 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.  相似文献   
50.
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号