首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   10篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2014年   1篇
  2013年   14篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1985年   3篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1974年   9篇
  1973年   5篇
  1972年   8篇
  1971年   8篇
  1970年   2篇
  1969年   3篇
  1968年   7篇
  1967年   3篇
  1966年   8篇
  1965年   2篇
排序方式: 共有179条查询结果,搜索用时 173 毫秒
21.
22.
23.
Lethal factor (LF), a zinc-dependent protease of high specificity produced by Bacillus anthracis, is the effector component of the binary toxin that causes death in anthrax. New therapeutics targeting the toxin are required to reduce systemic anthrax-related fatalities. In particular, new insights into the LF catalytic mechanism will be useful for the development of LF inhibitors. We evaluated the minimal length required for formation of bona fide LF substrates using substrate phage display. Phage-based selection yielded a substrate that is cleaved seven times more efficiently by LF than the peptide targeted in the protein kinase MKK6. Site-directed mutagenesis within the metal-binding site in the LF active center and within phage-selected substrates revealed a complex pattern of LF-substrate interactions. The elementary steps of LF-mediated proteolysis were resolved by the stopped-flow technique. Pre-steady-state kinetics of LF proteolysis followed a four-step mechanism as follows: initial substrate binding, rearrangement of the enzyme-substrate complex, a rate-limiting cleavage step, and product release. Examination of LF interactions with metal ions revealed an unexpected activation of the protease by Ca2+ and Mn2+. Based on the available structural and kinetic data, we propose a model for LF-substrate interaction. Resolution of the kinetic and structural parameters governing LF activity may be exploited to design new LF inhibitors.Anthrax is an infectious disease caused by the encapsulated, spore-forming bacterium Bacillus anthracis. Systemic forms of the disease, such as inhalational anthrax, are characterized by nonspecific early symptoms, rapid progression, and lethality approaching 100% (1). The lethality of inhalational anthrax is high even with antibiotic treatment and is caused by accumulation of secreted anthrax toxin (2), which consists of three proteins as follows: protective antigen (PA),2 lethal factor (LF), and edema factor. PA binds to membrane receptors, forms pore complexes, and translocates LF and edema factor into the host cell (3, 4). The PA·LF complex is known as the lethal toxin, a virulence factor with pleiotropic action that facilitates establishment of the B. anthracis infection. LF is a Zn2+-dependent metalloprotease related to the thermolysin family that cleaves mitogen-activated protein kinase kinases (5).Although the complete mechanism by which LF causes fatal intoxication is still unclear, inhibition of LF proteolytic activity may be an efficient means of preventing anthrax lethality. A better understanding of the LF catalytic mechanism will facilitate rational design and optimization of LF inhibitors with potential clinical applicability. Recent structural (6, 7), mechanistic (8), and in vivo studies (9, 10) of LF point to a sophisticated catalytic mechanism involving accurate recognition of multiple target substrates.Here we use substrate phage display and stopped-flow fluorimetry kinetics to examine both the substrate specificity and elementary steps of substrate processing by LF. Our data allow us to construct a working model of LF-substrate binding and cleavage.  相似文献   
24.
The ultrastrcutre of Saccharomyces cerevisiae cells (wild-type and ysp2 mutant cells) was studied after amiodarone treatment. Amiodarone is used as a pharmaceutical substance for treating a number of diseases; however, it is known that amiodarone causes structural and functional disturbances in patient tissues. Here, the peculiarities of the amiodarone effect are studied in Saccharomyces cerevisiae yeast, in which amiodarone has been shown to cause apoptosis. Electron-microscopic study of yeast cells after amiodarone treatment reveals a significant increase in the number of lipid particles, which can lead to the formation of a structural complex by interacting with cell membranous organelles. Amiodarone causes the appearance of small and slightly swollen mitochondria. Chromatin displacement to the periphery of the nucleus, nuclear sectioning, and nuclear envelope disturbances are observed in the cells under these conditions. The detected changes int eh ultrastructure of the cell in Saccharomyces cerevisiae are considered to be a specific response to phospholipidosis and apoptosis caused by amiodarone.  相似文献   
25.
A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.  相似文献   
26.
27.
28.
The recovery of recombinant proteins includes a purification process that has to be compressed to a minimum of steps in order to get high yields with a low cost expenditure. A selective liberation of recombinant proteins by cell permeabilization leads to both a high product purity just in the beginning of the recovery process and to a simplification of the cell residue separation compared to the mechanical cell disruption. In case of the purification of the bacterial plasminogen activator Staphylokinase from E. coli cells, yields of 82% with a purity of 46% were attained by utilization of permeabilization by biomass freezing, resuspension in a Tris/EDTA-buffer and following micro-diafiltration. A recovery process without interruption (freezing) is possible due to the addition of guanidine-HCl and Triton X100 to the buffer. These methods were developed on a laboratory-scale.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号