全文获取类型
收费全文 | 117篇 |
免费 | 16篇 |
专业分类
133篇 |
出版年
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 7篇 |
2013年 | 7篇 |
2012年 | 3篇 |
2011年 | 9篇 |
2010年 | 5篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2007年 | 8篇 |
2006年 | 1篇 |
2005年 | 11篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1989年 | 5篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1975年 | 3篇 |
1968年 | 1篇 |
排序方式: 共有133条查询结果,搜索用时 12 毫秒
21.
22.
Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea 下载免费PDF全文
Tina Treude Victoria Orphan Katrin Knittel Armin Gieseke Christopher H. House Antje Boetius 《Applied microbiology》2007,73(7):2271-2283
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis. 相似文献
23.
Katrin Knittel Andreas Lemke Heike Eilers Karin Lochte Olaf Pfannkuche 《Geomicrobiology journal》2013,30(4):269-294
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria. 相似文献
24.
S Iu Kliushnik L M Selimova LM V M Za?des 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》1990,(6):23-30
The optimum conditions for using the method of radioimmunoprecipitation (RIP) for the detection of human immunodeficiency virus (HIV) in serum samples have been established. Out of several available cell lines persistently infected with HIV, specially selected line 17 has been chosen. The characteristic feature of this is the high and stable (under the conditions of prolonged cultivation) accumulation of virus-specific proteins in infected cells. The optimum conditions for making the test and its evaluation have also been established. The data of literature on the advantages of the method of RIP over such traditional methods as the enzyme immunoassay and immunoblotting have been confirmed. Thus, the presence of specific antibodies in several serum samples registered as false negative has been established. The intertypical reactivity of two serotypes of the virus, HIV-1 and HIV-2, has been studied. Cross reactivity of antibodies with respect to the HIV gene gag, but not with respect to viral glycoproteids, has been established. Ideas on the expediency and prospects of using RIP for the serological control of HIV infection are presented. 相似文献
25.
26.
Increased Susceptibility of Rainbow Trout to Infectious Hematopoietic Necrosis Virus After Exposure to Copper 下载免费PDF全文
Exposure of rainbow trout to sublethal levels of copper in water increased their susceptibility to infectious hematopoietic necrosis virus. In most instances, the percent mortality was twice as great in the stressed groups compared with those groups which were not stressed but received the same virus dose. Although the level of copper in the water influenced the mortality rates, the length of exposure did not prove to be critical, as similar results were obtained after 1, 3, 5, 7, or 9 days of exposure. When different virus challenges were employed, the percent mortalities were again greater in the stressed fish at all virus doses tested, and at one dose level mortalities were noted in the stressed group but not in the untreated group. 相似文献
27.
Andrew R. Ruwe Leonid Koikov Zalfa Abdel-Malek Carrie Haskell-Luevano Marvin L. Dirain Federico Portillo Zhimin Xiang Matt Wortman James J. Knittel 《Bioorganic & medicinal chemistry letters》2009,19(17):5176-5181
A series of 30 RCO–HfR–NH2 derivatives show preference for the mouse MC1R vs MC3-5Rs. trans-4-HOC6H4CHCHCO–HfR–NH2 (13) [EC50 (nM): MC1R 83, MC3R 20500, MC4R 18130 and MC5R 935; ratio 1:246:217:11] is 11 times more potent than the lead compound LK-394 Ph(CH2)3CO–HfR–NH2 (2) and only 11 times less potent than the native tridecapeptide α-MSH at mMC1R. Differences in conformations of 2 and 13 are discussed. 相似文献
28.
Emily HM Wong David K Smith Raul Rabadan Malik Peiris Leo LM Poon 《BMC evolutionary biology》2010,10(1):253
Background
The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. 相似文献29.
30.
Diversity and distribution of methanotrophic archaea at cold seeps 总被引:12,自引:0,他引:12
Knittel K Lösekann T Boetius A Kort R Amann R 《Applied and environmental microbiology》2005,71(1):467-479
In this study we investigated by using 16S rRNA-based methods the distribution and biomass of archaea in samples from (i) sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). The archaeal diversity was low in both locations; there were only four (Hydrate Ridge) and five (Black Sea) different phylogenetic clusters of sequences, most of which belonged to the methanotrophic archaea (ANME). ANME group 2 (ANME-2) sequences were the most abundant and diverse sequences at Hydrate Ridge, whereas ANME-1 sequences dominated the Black Sea mats. Other seep-specific sequences belonged to the newly defined group ANME-3 (related to Methanococcoides spp.) and to the Crenarchaeota of marine benthic group B. Quantitative analysis of the samples by fluorescence in situ hybridization (FISH) showed that ANME-1 and ANME-2 co-occurred at the cold seep sites investigated. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats. These variations in the distribution, diversity, and morphology of methanotrophic consortia are discussed with respect to the presence of microbial ecotypes, niche formation, and biogeography. 相似文献