首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   18篇
  国内免费   7篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   11篇
  2013年   10篇
  2012年   15篇
  2011年   32篇
  2010年   24篇
  2009年   16篇
  2008年   23篇
  2007年   13篇
  2006年   12篇
  2005年   19篇
  2004年   29篇
  2003年   25篇
  2002年   28篇
  2001年   26篇
  2000年   21篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1971年   2篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
81.
O-Antigen is a component of the outer membrane of Gram-negative bacteria and one of the most variable cell surface constituents, giving rise to major antigenic variability. The diversity of O-antigen is almost entirely attributed to genetic variations in O-antigen gene clusters. Bacteria of the genus Providencia are facultative pathogens, which can cause urinary tract infections, wound infections and enteric diseases. Recently, the O-antigen gene cluster of Providencia was localized between the cpxA and yibK genes in the genome. However, few genes involved in the synthesis of Providencia O-antigens have been functionally identified. In this study, the putative O-antigen gene cluster of Providencia alcalifaciens O30 was sequenced and analyzed. Almost all putative genes for the O-antigen synthesis were found, including a novel formyltransferase gene vioF that was proposed to be responsible for the conversion of dTDP-4-amino-4,6- dideoxy-D-glucose (dTDP-D-Qui4N) to dTDP-4,6-dideoxy-4-formamido-D-glucose (dTDP-D-Qui4NFo). vioF was cloned, and the enzyme product was expressed as a His-tagged fusion protein, purified and assayed for its activity. High-performance liquid chromatography was used to monitor the enzyme-substrate reaction, and the structure of the product dTDP-D-Qui4NFo was established by electrospray ionization tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Kinetic parameters of VioF were determined, and effects of temperature and cations on its activity were also examined. Together, the functional analyses support the identification of the O-antigen gene cluster of P. alcalifaciens O30.  相似文献   
82.
The O-antigen is one of the most variable Gram-negative cell constituents, and its specificity is important for bacterial niche adaptation. The observed diversity of O-antigen forms is mainly due to genetic variations in O-antigen gene clusters. Less common is a change of gene function due to nucleotide substitution; a new instance of which is reported here. The O-antigens of E. coli O107 and O117 have similar structures differing only in a single sugar residue (GlcNAc in O107 substituted for Glc in O117). These O-antigen gene clusters contain the same set of 11 genes and share 98.6% overall DNA identity. The function of the genes in the gene clusters have been proposed previously, and a glycosyltransferase gene (wclY) with nucleotide polymorphism in each strain was proposed to transfer different sugars in different strains. To identify the gene responsible for the transfer of different sugars, wclY mutants of E. coli O107 and O117 were constructed, and each mutant was complemented with the wclY genes cloned from both O107 and O117. Structural analysis of the O-antigens of the four recombinant strains identified wclY as a Glc-transferase in O117 and a GlcNAc-transferase in O107. The evolutionary relationship of E. coli O107 and O117 O-antigens is also discussed.  相似文献   
83.
The structure of the O-polysaccharide of Proteus mirabilis CCUG 10705 (OF) was determined by chemical analyses along with one- and two-dimensional (1)H and (13)C NMR spectroscopy. The polysaccharide was found to contain an amide of D-galacturonic acid with L-alanine and based on the uniqueness of the O-polysaccharide structure and serological data, it was suggested to classify P. mirabilis OF into a new separate Proteus serogroup, O74. A weak cross-reactivity of P. mirabilis OF and P. mirabilis O5 was observed and accounted for by a similarity of their O-repeating units. The following structure of the polysaccharide of P. mirabilis OF was established: [chemical structure: see text]  相似文献   
84.
Highly phosphorylated core oligosaccharides and those substituted with one O-antigen repeating unit were obtained by mild acid degradation or strong alkaline hydrolysis of lipopolysaccharide samples from 23 reference strains representing all Pseudomonas aeruginosa O-serogroups. Studies by high-resolution electrospray ionization mass spectrometry and two-dimensional NMR spectroscopy revealed both conserved and variable structural features of the lipopolysaccharides of various O-serogroups. The upstream terminal saccharide of the O-antigen, which contributes most to the immunospecificity of the bacteria, was defined in 11 from a total of 13 O-serogroups. The data obtained link together the known biosynthesis pathways, genetics and serology of the P. aeruginosa lipopolysaccharide.  相似文献   
85.
The O-specific polysaccharide (O-antigen) structure of a Shigella flexneri type 4a strain from the Dysentery Reference Laboratory (London, UK) was elucidated in 1978 and its characteristic feature was found to be α-d-glucosylation of GlcNAc at position 6, which defines O-factor IV. Our NMR spectroscopic studies of the O-specific polysaccharides of two other strains belonging to S. flexneri type 4a (G1668 from Adelaide, Australia, and 1359 from Moscow, Russia) confirmed the carbohydrate backbone structure but revealed in both strains an additional component, ethanolamine phosphate (EtnP), attached at position 3 of one of the rhamnose residues:

Phosphorylation has not been hitherto reported in any S. flexneri O-antigen. Reinvestigation of the O-specific polysaccharide of S. flexneri type 4b showed that it is not phosphorylated and confirmed its structure established earlier.  相似文献   
86.
O-Polysaccharides were released by mild acid degradation of lipopolysaccharides of Providencia alcalifaciens O35 and Proteus vulgaris O76 and were studied by 1D and 2D 1H and 13C NMR spectroscopies, including HMBC and NOESY (ROESY) experiments. Both polysaccharides were found to contain N-(1-carboxyethyl)alanine (alanopine) that is N-linked to 4-amino-4,6-dideoxyglucose. Analysis of published data [Vinogradov, E.; Perry, M. B. Eur. J. Biochem.2000, 267, 2439-2446] shows that alanopine is present also on the same sugar in the lipopolysaccharide core of Proteus mirabilis O6 and O57.  相似文献   
87.
88.
Acidic O-specific polysaccharide containing D-glucose, D-glucuronic acid, L-fucose, and 2-acetamido-2-deoxy-D-glucose was obtained by mild acid degradation of lipopolysaccharide from Providencia alcalifaciens O46. The following structure of the hexasaccharide repeating unit of the O-specific polysaccharide was established using methylation analysis along with 1H and 13C NMR spectroscopy, including 2D 1H, 1H-COSY, TOCSY, ROESY, 1H, 13C-HSQC, and HMQC-TOCSY experiments:
  相似文献   
89.
为探讨群居型西藏飞蝗Locusta migratoria tibetensis Chen地理种群数量性状关系,从青藏高原9个地区采集到不同地理种群,以数值分析对形态指标及其比值进行了分析。结果表明,前翅长度(E)、后足股节长度(F)、头宽(C)形态指标和E/F、F/C两个比值可以作为分析种群关系的参数。聚类分析和主成分分析结果相似,能够较好地说明青藏高原9个种群的地理变异和种群相互关系,9个地理种群可以分三个类群,即第Ⅰ类群包括百巴(BB)与八美(BM)种群;第Ⅱ类群包括普兰(PL)、扎囊(ZN)、洛须(LX)种群;第Ⅲ类群包括噶尔(GE)、香孜(XZ)、日土(RT)、那嘎(NG)种群。  相似文献   
90.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia alcalifaciens O12. Its structure was studied by sugar analysis using GLC of the alditol acetates and (S)-2-octyl glycosides, methylation analysis, Smith degradation, and 1H and 13C NMR spectroscopy, including 2D 1H-1H COSY, TOCSY, ROESY, 1H-13C HSQC, and HMBC experiments. It was found that the polymer is a neutral heteropolysaccharide and has a branched heptasaccharide repeating unit with the following structure:  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号