首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2209篇
  免费   234篇
  2443篇
  2021年   39篇
  2019年   23篇
  2018年   22篇
  2017年   19篇
  2016年   35篇
  2015年   56篇
  2014年   79篇
  2013年   99篇
  2012年   130篇
  2011年   118篇
  2010年   60篇
  2009年   54篇
  2008年   98篇
  2007年   81篇
  2006年   83篇
  2005年   92篇
  2004年   92篇
  2003年   66篇
  2002年   57篇
  2001年   65篇
  2000年   64篇
  1999年   52篇
  1998年   21篇
  1996年   25篇
  1995年   18篇
  1994年   26篇
  1993年   21篇
  1992年   39篇
  1991年   32篇
  1990年   35篇
  1989年   21篇
  1988年   31篇
  1987年   26篇
  1986年   37篇
  1985年   44篇
  1984年   28篇
  1983年   23篇
  1982年   28篇
  1980年   21篇
  1979年   35篇
  1978年   29篇
  1976年   24篇
  1975年   21篇
  1974年   23篇
  1973年   22篇
  1972年   23篇
  1971年   19篇
  1970年   18篇
  1967年   20篇
  1966年   27篇
排序方式: 共有2443条查询结果,搜索用时 15 毫秒
101.
Anthropogenic CO2 emissions are projected to lower the pH of the ocean 0.3 units by 2100. Previous studies suggested that Prochlorococcus and Synechococcus, the numerically dominant phytoplankton in the oceans, have different responses to elevated CO2 that may result in a dramatic shift in their relative abundances in future oceans. Here we showed that the exponential growth rates of these two genera respond to future CO2 conditions in a manner similar to other cyanobacteria, but Prochlorococcus strains had significantly lower realized growth rates under elevated CO2 regimes due to poor survival after exposure to fresh culture media. Despite this, a Synechococcus strain was unable to outcompete a Prochlorococcus strain in co-culture at elevated CO2. Under these conditions, Prochlorococcus' poor response to elevated CO2 disappeared, and Prochlorococcus' relative fitness showed negative frequency dependence, with both competitors having significant fitness advantages when initially rare. These experiments suggested that the two strains should be able to coexist indefinitely in co-culture despite sharing nearly identical nutritional requirements. We speculate that negative frequency dependence exists due to reductive Black Queen evolution that has resulted in a passively mutualistic relationship analogous to that connecting Prochlorococcus with the ‘helper’ heterotrophic microbes in its environment.  相似文献   
102.
103.
104.
The direct and indirect interactions of invasive ants with plants, insect herbivores, and Hemiptera are complex. While ant and Hemiptera interactions with native plants have been well studied, the effects of invasive ant–scale insect mutualisms on the reproductive output of invasive weeds have not. The study system consisted of Argentine ants (Linepithema humile), boneseed (Chrysanthemoides monilifera monilifera), and sap-sucking scale insects (Hemiptera: Saissetia oleae and Parasaissetia nigra), all of which are invasive in New Zealand. We examined the direct and indirect effects of Argentine ants on scale insects and other invertebrates (especially herbivores) and on plant reproductive output. Argentine ants spent one-third of their time specifically associated with scale insects in tending behaviours. The invertebrate community was significantly different between uninfested and infested plants, with fewer predators and herbivores on ant-infested plants. Herbivore damage was significantly reduced on plants with Argentine ants, but sooty mould colonisation was greater where ants were present. Herbivore damage increased when ants were excluded from plants. Boneseed plants infested with Argentine ants produced significantly more fruits than plants without ants. The increase in reproductive output in the presence of ants may be due to increased pollination as the result of pollinators being forced to relocate frequently to avoid attack by ants, resulting in an increase in pollen transfer and higher fruit/seed set. The consequences of Argentine ant invasion can be varied; not only does their invasion have consequences for maintaining biodiversity, ant invasion may also affect weed and pest management strategies.  相似文献   
105.
Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of the spinning ducts.  相似文献   
106.

Background

Tissue factor (TF), an in vivo initiator of blood coagulation, is a transmembrane protein and has two disulfides in the extracellular domain. The integrity of one cysteine pair, Cys186–Cys209, has been hypothesized to be essential for an allosteric “decryption” phenomenon, presumably regulating TF procoagulant function, which has been the subject of a lengthy debate. The conclusions of published studies on this subject are based on indirect evidences obtained by the use of reagents with potentially oxidizing/reducing properties.

Methods

The status of disulfides in recombinant TF1–263 and natural placental TF in their non-reduced native and reduced forms was determined by mass-spectrometry. Functional assays were performed to assess TF cofactor function.

Results

In native proteins, all four cysteines of the extracellular domain of TF are oxidized. Reduced TF retains factor VIIa binding capacity but completely loses the cofactor function.

Conclusion

The reduction of TF disulfides (with or without alkylation) eliminates TF regulation of factor VIIa catalytic function in both membrane dependent FX activation and membrane independent synthetic substrate hydrolysis.

General significance

Results of this study advance our knowledge on TF structure/function relationships.  相似文献   
107.

The cosmopolitan subfamilies Aphrodinae, Jassinae, Xestocephalinae, Idiocerinae, and Macropsinae are diagnosed and the New Zealand species described and illustrated. Each subfamily is represented in New Zealand by only one or two species, those in Idiocerinae having been introduced from Europe or North America. The species Euacanthella brunnea Evans (Aphrodinae) is synonymised with the Australian species E. insularis Evans (new synonymy).  相似文献   
108.
109.
The Mus musculus myosin-18A gene is expressed as two alternatively spliced isoforms, α and β, with reported roles in Golgi localization, in maintenance of cytoskeleton, and as receptors for immunological surfactant proteins. Both myosin-18A isoforms feature a myosin motor domain, a single predicted IQ motif, and a long coiled-coil reminiscent of myosin-2. The myosin-18Aα isoform, additionally, has an N-terminal PDZ domain. Recombinant heavy meromyosin- and subfragment-1 (S1)-like constructs for both myosin-18Aα and -18β species were purified from the baculovirus/Sf9 cell expression system. These constructs bound both essential and regulatory light chains, indicating an additional noncanonical light chain binding site in the neck. Myosin-18Aα-S1 and -18Aβ-S1 molecules bound actin weakly with Kd values of 4.9 and 54 μm, respectively. The actin binding data could be modeled by assuming an equilibrium between two myosin conformations, a competent and an incompetent form to bind actin. Actin binding was unchanged by presence of nucleotide. Both myosin-18A isoforms bound N-methylanthraniloyl-nucleotides, but the rate of ATP hydrolysis was very slow (<0.002 s−1) and not significantly enhanced by actin. Phosphorylation of the regulatory light chain had no effect on ATP hydrolysis, and neither did the addition of tropomyosin or of GOLPH3, a myosin-18A binding partner. Electron microscopy of myosin-18A-S1 showed that the lever is strongly angled with respect to the long axis of the motor domain, suggesting a pre-power stroke conformation regardless of the presence of ATP. These data lead us to conclude that myosin-18A does not operate as a traditional molecular motor in cells.  相似文献   
110.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号