首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   8篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   9篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
  1984年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
51.
Bacillus pumilus was isolated from surface-sterilized tissues of the medicinal plant Ocimum sanctum. Scanning electron microscopic (SEM) imaging confirmed the presence of a rod shaped bacterium within the plant tissues. The bacterium was identified as B. pumilus by biochemical analyses and 16S rRNA gene sequencing. In vitro analyses indicate that the isolated strain of B. pumilus was endowed with multiple plant growth promotion (PGP) traits such as phosphate solubilization and the production of indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN). Phosphate solubilization (37.3 μg ml?1) and IAA production (36.7 μg ml?1) by the isolate was found to reach a maximum after 60 h of incubation. Siderophore mediated iron sequestration by B. pumilus may confer a competitive advantage to the host with respect to pathogen inhibition. Siderophore produced by the isolate was found to be of a trihydroxamate type with hexadentate nature. The B. pumilus isolate also exhibited cellulolytic, proteolytic and chitinolytic activity. Cell free supernatant, culture filtrates of the isolate were found to suppress the growth of fungal phytopathogens. The culture filtrate retained its antifungal activity even after exposure to heat. In addition to PGP, the isolate exhibited probiotic properties such as acid tolerance (pH2), bile salt tolerance (2 %), auto-aggregation, antibiotic resistance and the absence of haemolytic activity. These finding suggest the possibility of utilizing this endophytic strain of B. pumilus as a bioinoculant to enhance plant growth and also as a probiotic.  相似文献   
52.
Although the color of indigo is strongly dependent on its environment, it is blue in most commonly encountered situations. Indigo's absorption at such long wavelengths for such a small molecule is unique, and I provide here an overview of the concepts advanced to account for this feature. A traditional valence–bond approach may be used to provide a reasonable qualitative explanation. A more rigorous, quantitative explanation is provided by molecular orbital methods of varying degrees of sophistication and several explanations have been proposed based on these models. Commonly, it is suggested that the important structural unit in determining color is based on the cross-conjugated “H-chromophore” concept. A second closely related explanation describes it as two symmetrically coupled merocyanine chains. Another proposal suggests that the basic chromophore may be interpreted as the aza analogue of two coupled anti aromatic-cyclopentadienyl ions. PiSYSTEM, a commercially available quantum mechanics program, has been used to provide a successful quantitative account of the colors of indigo and indirubin, a red isomer.  相似文献   
53.

Background

Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity.

Methods

MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses.

Results

After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months.

Conclusions

These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice.  相似文献   
54.
In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput screening methods such as enzyme-linked immunosorbant assay. The high cost and the need for bioinformatics experts and powerful computer clusters, however, have limited the general use of deep sequencing in antibody selections. Here, we describe the AbMining ToolBox, an open source software package for the straightforward analysis of antibody libraries sequenced by the three main next generation sequencing platforms (454, Ion Torrent, MiSeq). The ToolBox is able to identify heavy chain CDR3s as effectively as more computationally intense software, and can be easily adapted to analyze other portions of antibody variable genes, as well as the selection outputs of libraries based on different scaffolds. The software runs on all common operating systems (Microsoft Windows, Mac OS X, Linux), on standard personal computers, and sequence analysis of 1–2 million reads can be accomplished in 10–15 min, a fraction of the time of competing software. Use of the ToolBox will allow the average researcher to incorporate deep sequence analysis into routine selections from antibody display libraries.  相似文献   
55.
56.
Summary The potential usefulness of the tissue factor pathway inhibitor gene for construction of physical and genetic linkage maps of chromosome 2 is reported.  相似文献   
57.
The Bcl-2 relative Bak is thought to drive apoptosis by forming homo-oligomers that permeabilize mitochondria, but how it is activated and oligomerizes is unclear. To clarify these pivotal steps toward apoptosis, we have characterized multiple random loss-of-function Bak mutants and explored the mechanism of Bak conformation change during apoptosis. Single missense mutations located to the alpha helix 2-5 region of Bak, with most altering the BH3 domain or hydrophobic groove (BH1 domain). Loss of function invariably corresponded to impaired ability to oligomerize. An essential early step in Bak activation was shown to be exposure of the BH3 domain, which became reburied in dimers. We demonstrate that oligomerization involves insertion of the BH3 domain of one Bak molecule into the groove of another and may produce symmetric Bak dimers. We conclude that this BH3:groove interaction is essential to nucleate Bak oligomerization, which in turn is required for its proapoptotic function.  相似文献   
58.
Hsp70 chaperones assist protein folding processes through nucleotide-controlled cycles of substrate binding and release. In our effort to understand the structure-function relationship within the Hsp70 family of proteins, we characterized the Escherichia coli member of a novel Hsp70 subfamily, HscC, and identified considerable differences to the well studied E. coli homologue, DnaK, which together suggest that HscC is a specialized chaperone. The basal ATPase cycle of HscC had k(cat) and K(m) values that were 8- and 10,000-fold higher than for DnaK. The HscC ATPase was not affected by the nucleotide exchange factor of DnaK GrpE and stimulated 8-fold by DjlC, a DnaJ protein with a putative transmembrane domain, but not by other DnaJ proteins tested. Substrate binding dynamics and substrate specificity differed significantly between HscC and DnaK. These differences are explicable by distinct structural variations. HscC does not have general chaperone activity because it did not assist refolding of a denatured model substrate. In vivo, HscC failed to complement temperature sensitivity of DeltadnaK cells. Deletion of hscC caused a slow growth phenotype that was suppressed after several generations. Triple knock-outs of all E. coli genes encoding Hsp70 proteins (DeltadnaK DeltahscA DeltahscC) were viable, indicating that Hsp70 proteins are not strictly essential for viability. An extensive search for DeltahscC phenotypes revealed a hypersensitivity to Cd(2+) ions and UV irradiation, suggesting roles of HscC in the cellular response to these stress treatments. Together our data show that the Hsp70 structure exhibits an astonishing degree of adaptive variations to accommodate requirements of a specialized function.  相似文献   
59.
Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.  相似文献   
60.
The mitochondrial pathway of apoptosis is initiated by Bcl-2 homology region 3 (BH3)-only members of the Bcl-2 protein family. On upregulation or activation, certain BH3-only proteins can directly bind and activate Bak and Bax to induce conformation change, oligomerization and pore formation in mitochondria. BH3-only proteins, with the exception of Bid, are intrinsically disordered and therefore, functional studies often utilize peptides based on just their BH3 domains. However, these reagents do not possess the hydrophobic membrane targeting domains found on the native BH3-only molecule. To generate each BH3-only protein as a recombinant protein that could efficiently target mitochondria, we developed recombinant Bid chimeras in which the BH3 domain was replaced with that of other BH3-only proteins (Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk). The chimeras were stable following purification, and each immunoprecipitated with full-length Bcl-xL according to the specificity reported for the related BH3 peptide. When tested for activation of Bak and Bax in mitochondrial permeabilization assays, Bid chimeras were ~1000-fold more effective than the related BH3 peptides. BH3 sequences from Bid and Bim were the strongest activators, followed by Puma, Hrk, Bmf and Bik, while Bad and Noxa were not activators. Notably, chimeras and peptides showed no apparent preference for activating Bak or Bax. In addition, within the BH3 domain, the h0 position recently found to be important for Bax activation, was important also for Bak activation. Together, our data with full-length proteins indicate that most BH3-only proteins can directly activate both Bak and Bax.The Bcl-2 family of proteins controls the mitochondrial pathway of apoptosis, a process often dysregulated in cancer and other diseases.1, 2, 3 Apoptotic triggers including DNA damage and oncogene activation cause the synthesis or activation of one or more pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins,1, 2, 3, 4 a subfamily that includes Bid, Bim, Puma, Noxa, Bad, Bik, Bmf and Hrk. These proteins then engage via their BH3 domain with other Bcl-2 family members. BH3-only proteins that can directly bind and activate the Bcl-2 effector proteins Bak or Bax are called ‘activators''.5 When Bak or Bax become activated and oligomerize in the mitochondrial outer membrane (MOM), the apoptotic ‘switch'' has flipped and the cell is committed to cell death. The prosurvival members (Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bfl-1/A1 and Bcl-B) inhibit apoptosis by specifically binding both the BH3-only proteins and activated Bak and Bax.6, 7, 8, 9, 10, 11 Thus, the cell''s complement of prosurvival proteins, Bak, and Bax, determines the sensitivity of that cell to each BH3-only protein, and by extension to each type of pro-apoptotic stimulus.A thorough understanding of BH3-only proteins is crucial for the development of cancer therapeutics such as the new class of anti-cancer molecules called BH3 mimetics that are showing significant promise in clinical trials.12, 13 The binding of BH3-only proteins to prosurvival proteins has been well-characterized and revealed significant preferences for engaging different members.6, 8, 9 How BH3-only proteins bind and activate Bak and Bax remains less understood for several reasons. First, generating stable recombinant BH3-only proteins is difficult because, except for Bid, they are intrinsically disordered14, 15, 16 and because most contain hydrophobic C-terminal membrane anchors.17 Thus, most in vitro studies of BH3-only proteins have used synthetic peptides corresponding to the BH3 domains, C-terminally truncated recombinant proteins or in vitro translated (IVT) proteins. Second, BH3-only reagents bind poorly to recombinant Bak and Bax in the absence of membranes, although detergents and liposomes may substitute for the MOM.18, 19, 20 Third, activation of Bak and Bax on mitochondria can be complicated by the presence of other proteins such as prosurvival proteins. Indeed, genetically altering BH3-only protein levels in mice resulted in complex phenotypes due to multiple interactions between family members, precluding firm conclusions as to which BH3-only proteins are direct activators.18, 21, 22Bid and Bim are direct activators according to a variety of approaches,5, 8, 9, 23, 24 and were recently proposed to be specific for Bak and Bax, respectively.25 Early studies using Noxa BH3 peptides5, 8 and IVT Noxa9 concluded that Noxa was not an activator. However, in more recent studies a Noxa BH3 peptide23 and purified recombinant NoxaΔC20 were found to be activators of both Bak and Bax. Puma has also been described as both an activator26, 27 and not an activator.8, 28 Du et al.23 analyzed the full panel of BH3 peptides and classified Bim as a strong activator, Bid, Noxa and Bmf as moderate activators, and Puma, Bik and Hrk as weak activators. The only BH3-only member that has never been described as an activator is Bad.While BH3 peptides and recombinant truncated BH3-only proteins have been useful for in vitro studies, new reagents that target mitochondria may better reflect the behavior of the parent proteins. As Bid is stable as a recombinant protein, we generated chimeras of Bid in which the BH3 domain of Bid was replaced with that of seven other BH3-only proteins. This is a similar approach to the Bim chimeras used for expression in cells18 and in mice.29 More recently, truncated Bid (tBid) chimeras containing the BH3 domains of Bim, Bak and Bax as well as those of the prosurvival proteins, have been generated as IVT proteins.11To compare the ability of BH3-only proteins to activate Bak and Bax in vitro, we incubated Bid chimeras and BH3 peptides with mitochondria containing either Bak or Bax. We found that the membrane-targeted Bid chimeras were much more potent activators than their related BH3 peptides, and that all BH3 domains except for Bad and Noxa were activators to some extent. We conclude that activation of Bak and Bax may be underestimated by studies using BH3 peptides, and that even BH3-only proteins such as Bik, Bmf and Hrk that are often considered unable to activate Bak or Bax, may act as activators under certain conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号