首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   15篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   10篇
  2014年   14篇
  2013年   16篇
  2012年   19篇
  2011年   22篇
  2010年   17篇
  2009年   11篇
  2008年   16篇
  2007年   13篇
  2006年   19篇
  2005年   20篇
  2004年   11篇
  2003年   19篇
  2002年   17篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
261.
The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri. We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots out of more than 8000 genes present on the chip encode a nicotianamine (NA) synthase and a putative Zn2+ uptake system. The significantly higher activity of these and other genes involved in metal homeostasis under various growth conditions was confirmed by Northern and RT-PCR analyses. A. halleri roots also show higher NA synthase protein levels. Furthermore, we developed a capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (CapLC-ESI-QTOF-MS)-based NA analysis procedure and consistently found higher NA levels in roots of A. halleri. Expression of a NA synthase in Zn2+-hypersensitive Schizosaccharomyces pombe cells demonstrated that formation of NA can confer Zn2+ tolerance. Taken together, these observations implicate NA in plant Zn homeostasis and NA synthase in the hyperaccumulation of Zn by A. halleri. Furthermore, the results show that comparative microarray analysis of closely related species can be a valuable tool for the elucidation of phenotypic differences between such species.  相似文献   
262.
During some estimations of the nuclear DNA content, based on determinations propidium iodide (PI) binding through fluorocytometry for Taenia crassiceps cysticerci, significant variation in the results were found. This initial observation led to a series of experiments designed to explain the variation. These changes could be induced by the diameter of the needles in the syringes used for the mouse to mouse transfer of the cysts. Nuclei from cysts transferred through 27-gauge needles showed 30% less PI staining than those transferred through 21 gauge needles, after 2 months infections. Reduction in PI capture induced by 27-gauge needle was reversible when the cysts were maintained in their mice hosts during 5 months. Moreover, variation in PI binding to cysticercal DNA was also found when comparing parasites grown in male versus female mice. The use of agents that homogenize the chromatin structure during PI staining, allowed demonstrating that variation were entirely due to differences in the chromatin relaxation/compaction. Additional experiments demonstrated that the higher compaction is accompanied by a reduced ability of cysts to grow in the peritoneal cavity of BALB/cAnN mice. Furthermore, proteomic analysis also showed that these changes in chromatin relaxation/compaction resulted in different levels and patterns of protein expression. Our results strongly suggest that chromatin is involved in several well characterized phenomena of the T. crassiceps murine model, and open new avenues for a detailed approach to understand such a complex host-parasite relationship.  相似文献   
263.
264.
Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.  相似文献   
265.
Budding yeast cell cycle oscillates between states of low and high cyclin-dependent kinase activity, driven by association of Cdk1 with B-type (Clb) cyclins. Various Cdk1-Clb complexes are activated and inactivated in a fixed, temporally regulated sequence, inducing the behaviour known as "waves of cyclins". The transition from low to high Clb activity is triggered by degradation of Sic1, the inhibitor of Cdk1-Clb complexes, at the entry to S phase. The G(1) phase is characterized by low Clb activity and high Sic1 levels. High Clb activity and Sic1 proteolysis are found from the beginning of the S phase until the end of mitosis. The mechanism regulating the appearance on schedule of Cdk1-Clb complexes is currently unknown. Here, we analyse oscillations of Clbs, focusing on the role of their inhibitor Sic1. We compare mathematical networks differing in interactions that Sic1 may establish with Cdk1-Clb complexes. Our analysis suggests that the wave-like cyclins pattern derives from the binding of Sic1 to all Clb pairs rather than from Clb degradation. These predictions are experimentally validated, showing that Sic1 indeed interacts and coexists in time with Clbs. Intriguingly, a sic1Δ strain looses cell cycle-regulated periodicity of Clbs, which is observed in the wild type, whether a SIC1-0P strain delays the formation of Clb waves. Our results highlight an additional role for Sic1 in regulating Cdk1-Clb complexes, coordinating their appearance.  相似文献   
266.
Fibronectin type II (Fn2) module-containing proteins in the male genital tract are characterized by different numbers of Fn2 modules. Predominantly two classes exist which are distinct by having either two or four Fn2 modules. Minor variants with three Fn2 modules were also found in the human and the porcine epididymis. To reveal their relationship, mRNAs and proteins of representatives of these classes were studied in human, in Sus scrofa, and in rodents. Adult boars expressed members of both classes, i.e. ELSPBP1 and pB1, in subsequent regions of the epididymis, and both were under androgenic control. Human and rodent epididymides, on the other hand, alternatively contained only representatives of one of these two classes, i.e. ELSPBP1 in the human and two different pB1-related counterparts in rodents. ELSPBP1 and pB1-related genomic sequences were closely linked in chromosomal regions HSA 19q and SSC 6 q11-q21; conserved synteny between these regions is well established. On the other hand, in a syntenic region on mouse chromosome 7, ELSPBP1-related sequences were lacking. Tight binding to the sperm membrane via a choline-mediated mechanism was a common feature of the two classes of Fn2-module proteins, suggesting related function(s). However, differences in their regionalized expression patterns along the male genital tract as well as in association sites on the sperm surface suggested a species-specific sequential order in sperm binding.  相似文献   
267.
The songs of the male humpback whales (Megaptera novaeangliae) have traditionally been associated with mating at tropical and subtropical mating grounds during winter. However, songs also occur out of mating season, both on feeding grounds in spring, late summer and fall. This study provides the first report of humpback whale singing behaviour in the subarctic waters of Northeast Iceland (Skjálfandi Bay) using long-term bottom-moored acoustic recorders during September 2008–February 2009 and from April to September 2009. Singing started in late November and peaked in February, within the breeding season. No songs were detected from spring to fall, despite visual detections of humpback whales. Non-song sound signals from humpback whales were detected during all recording months. Songs were partly composed of fundamental units common with other known mating grounds, and partly of song units likely unique to the study area. The variety of song unit types in the songs increased at the end of the winter recordings, indicating a gradual change in the songs throughout the winter season; as has been shown on traditional mating grounds. The relative proportion of songs compared with non-song signals was higher during dark hours than daylight hours. The short light periods of the winter, and where food is available, likely influence the daily occurrence of humpback whales’ songs in the subarctic.  相似文献   
268.
Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding—the elucidation of the basic and presumably conserved “design” and “engineering” principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.  相似文献   
269.

Background

During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been succesfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework.

Results

In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results.

Conclusions

The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.  相似文献   
270.
Timing matters     
Edda Klipp 《FEBS letters》2009,583(24):4013-3894
Cells are entities in space and time. Systems biology strives to understand their composition, structural organization as well as dynamic behavior under different conditions. Here, measures for dynamic properties such as characteristic times, time hierarchy and time-dependent response are reviewed. Using a number of examples from yeast and micro-organism systems biology, the importance of considering the timing in experimental and theoretical research is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号