首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   31篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   8篇
  2015年   20篇
  2014年   33篇
  2013年   19篇
  2012年   24篇
  2011年   27篇
  2010年   10篇
  2009年   12篇
  2008年   17篇
  2007年   24篇
  2006年   13篇
  2005年   14篇
  2004年   7篇
  2003年   7篇
  2002年   14篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1996年   3篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1988年   2篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1970年   4篇
  1969年   3篇
  1968年   6篇
  1964年   1篇
  1963年   3篇
  1960年   2篇
  1959年   1篇
  1951年   1篇
  1931年   2篇
排序方式: 共有367条查询结果,搜索用时 875 毫秒
291.
The p53 homolog p73 is frequently overexpressed in cancers. Especially the transactivation domain truncated isoform ΔNp73 has oncogenic properties and its upregulation is associated with poor patient survival. It has been shown that ΔNp73 has an inhibitory effect on the transactivation capacity of p53 and other p73 isoforms. Here, we confirm this finding but surprisingly find that ΔNp73 may also stimulate the expression of TGF-β signaling targets. Promoter-reporter analysis indicated that the presence of Smad Binding Elements (SBE) in the promoter is sufficient for stimulation of gene expression by ΔNp73. TGF-β signaling was less efficient in ΔNp73 downregulated cells, whereas tetracycline induced ΔNp73 increased expression of endogenous TGF-β regulated genes PAI-1 and Col1a1. Pull-down assays with SBE DNA suggest that ΔNp73 enhances smad3/4 binding to SBEs, thereby stimulating TGF-β signaling. Chromatin immunoprecipitation assays confirmed a direct interaction between ΔNp73 and SBE. Given the role of TGF-β signaling in carcinogenesis, tumor invasion and metastasis via targets like PAI-1 and Col1a1, our data suggest a model on how this effect of ΔNp73 could be a contributing factor in cancer progression.  相似文献   
292.
Post-heat shock refolding of luciferase requires chaperones. Expression of a dominant negative HSF1 mutant (dnHSF1), which among other effects depletes cells of HSF1-regulated chaperones, blocked post-heat shock refolding of luciferase targeted to the cytoplasm, nucleus, or peroxisomes, while refolding of endoplasmic reticulum (ER)-targeted luciferase was inhibited by about 50 %. Luciferase refolding in the cytoplasm could be partially restored by expression of HSPA1A and fully by both HSPA1A and DNAJB1. For full refolding of ER luciferase, HSPA1A expression sufficed. Neither nuclear nor peroxisomal refolding was rescued by HSPA1A. A stimulatory effect of DNAJB1 on post-heat shock peroxisomal luciferase refolding was seen in control cells, while refolding in the cytoplasm or nucleus in control cells was inhibited by DNAJB1 expression in the absence of added HSPA1A. HSPB1 also improved refolding of peroxisomal luciferase in control cells, but not in dnHSF1 expressing cells. HSP90, HSPA5, HSPA6, and phosphomevalonate kinase (of which the synthesis is also downregulated by dnHSF1) had no effect on peroxisomal refolding in either control or chaperone-depleted cells. The chaperone requirement for post-heat shock refolding of peroxisomal luciferase in control cells is thus unusual in that it can be augmented by DNAJB1 or HSPB1 but not by HSPA1A; in dnHSF1 expressing cells, expression of none of the (co)-chaperones tested was effective, and an as yet to be identified, HSF1-regulated function is required.  相似文献   
293.

Background  

With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization.  相似文献   
294.
Mice with spontaneous mutations in the Sharpin gene develop chronic proliferative dermatitis that is characterized by eosinophilic inflammation of the skin and other organs with increased expression of type 2 cytokines and dysregulated development of lymphoid tissues. The mutant mice share phenotypic features with human hypereosinophilic syndromes. The biological function of SHARPIN and how its absence leads to such a complex inflammatory phenotype in mice are poorly understood. However, recent studies identified SHARPIN as a novel modulator of immune and inflammatory responses. The emerging mechanistic model suggests that SHARPIN functions as an important adaptor component of the linear ubiquitin chain assembly complex that modulates activation of NF-κB signalling pathway, thereby regulating cell survival and apoptosis, cytokine production and development of lymphoid tissues. In this review, we will summarize the current understanding of the ubiquitin-dependent regulatory mechanisms involved in NF-κB signalling, and incorporate the recently obtained molecular insights of SHARPIN into this pathway. Recent studies identified SHARPIN as an inhibitor of β1-integrin activation and signalling, and this may be another mechanism by which SHARPIN regulates inflammation. Furthermore, the disrupted lymphoid organogenesis in SHARPIN-deficient mice suggests that SHARPIN-mediated NF-κB regulation is important for de novo development of lymphoid tissues.  相似文献   
295.
296.

Background

Non-adherence to statins is substantial and is associated with numerous perceptions and experiences. However, time limits in clinical practice constrain in depth explorations of these perceptions and experiences.

Objectives

To propose and examine a strategy aimed at an efficient assessment of a wide array of perceptions and experiences regarding the efficacy, side effects, and practical problems of statins. Furthermore, to assess associations between this wide array of experiences and perceptions and non-adherence and to examine whether patients'' ''perceived self-efficacy'' moderated these associations.

Methods

Patients were recruited through community pharmacies. A wide array of specific patient perceptions and experiences was efficiently assessed using the electronic Tailored Medicine Inventory that allows people to skip irrelevant questions. Adherence was measured through self-report and pharmacy refill data.

Results

Of the two-hundred twenty-nine patients who participated (mean age 63.9, standard deviation 10.2), 40%-70% doubted the necessity of or lacked knowledge about the efficacy of statins, 20%-35% of the patients were worried about joint and muscle side effects or had experienced these, and 23% had encountered practical problems regarding information about statins, intake of tablets, the package, or the blister. Experiencing more practical problems was associated with increased unintentional non-adherence (Odds ratio 1.54, 95%CI:1.13–2.10, P < 0.01), whereas worrying about side effects was associated with increased intentional non-adherence (Odds ratio 1.90, 95%CI:1.17–3.08, P < 0.01). Higher ''perceived self-efficacy'' did not moderate these associations.

Conclusions

Insight into patients'' specific barriers with regard to appropriate statin use may reveal personal reasons for being non-adherent. The Tailored Medicine Inventory is a promising tool to devise individualized intervention strategies aimed at improving adherence by the clinician-patient alliance.  相似文献   
297.
Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram‐positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA‐interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation‐specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation.  相似文献   
298.
The purpose of the present study was to examine the changes in apparent mechanical properties of trabecular bone in the mandibular condyle during fetal development and to investigate the contributions of altering architecture, and degree and distribution of mineralization to this change. Three-dimensional, high-resolution micro-computed tomography (microCT) reconstructions were utilized to assess the altering architecture and mineralization during development. From the reconstructions, inhomogeneous finite element models were constructed, in which the tissue moduli were scaled to the local degree of mineralization of bone (DMB). In addition, homogeneous models were devised to study the separate influence of architectural and DMB changes on apparent mechanical properties. It was found that the bone structure became stiffer with age. Both the mechanical and structural anisotropies pointed to a rod-like structure that was predominantly oriented from anteroinferior to posterosuperior. Resistance against shear, also increasing with age, was highest in the sagittal plane. The reorganization of trabecular elements, which occurred without a change in bone volume fraction, contributed to the increase in apparent stiffness. The increase in DMB, however, contributed more dominantly. Incorporating the observed inhomogeneous distribution of mineralization decreased the apparent stiffness, but increased the mechanical anisotropy. This denotes that there might be a directional dependency of the DMB of trabecular elements, i.e. differently orientated trabecular elements might have different DMBs. In conclusion, the changes in DMB and its distribution are important to consider when studying mechanical properties during development and should be considered in other situations where differences in DMB are expected.  相似文献   
299.
300.

Background

Major depression is more prevalent in women than in men. The underlying neurobiological mechanisms are not well understood, but recent data shows that hippocampal volume reductions in depressed women occur only when depression is preceded by an early life stressor. This underlines the potential importance of early life stress, at least in women, for the vulnerability to develop depression. Perinatal stress exposure in rodents affects critical periods of brain development that persistently alter structural, emotional and neuroendocrine parameters in adult offspring. Moreover, stress inhibits adult hippocampal neurogenesis, a form of structural plasticity that has been implicated a.o. in antidepressant action and is highly abundant early postnatally. We here tested the hypothesis that early life stress differentially affects hippocampal structural plasticity in female versus male offspring.

Principal Findings

We show that 24 h of maternal deprivation (MD) at PND3 affects hippocampal structural plasticity at PND21 in a sex-dependent manner. Neurogenesis was significantly increased in male but decreased in female offspring after MD. Since no other structural changes were found in granule cell layer volume, newborn cell survival or proliferation rate, astrocyte number or gliogenesis, this indicates that MD elicits specific changes in subsets of differentiating cells and differentially affects immature neurons. The MD induced sex-specific effects on neurogenesis cannot be explained by differences in maternal care.

Conclusions

Our data shows that early environment has a critical influence on establishing sex differences in neural plasticity and supports the concept that the setpoint for neurogenesis may be determined during perinatal life. It is tempting to speculate that a reduced level of neurogenesis, secondary to early stress exposure, may contribute to maladaptation of the HPA axis and possibly to the increased vulnerability of women to stress-related disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号