首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   31篇
  2024年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   17篇
  2012年   13篇
  2011年   15篇
  2010年   15篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   6篇
  2002年   12篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
  1969年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1955年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
131.
132.
133.
134.
135.
136.
  1. Mouse plagues are a regular feature of grain‐growing regions, particularly in southern and eastern Australia, yet it is not clear what role various ecological processes play in the eruptive dynamics generating these outbreaks.
  2. This research was designed to assess the impact of adding food, water, and cover in all combinations on breeding performance, abundance, and survival of mouse populations on a typical cereal growing farm in northwestern Victoria.
  3. Supplementary food, water, and cover were applied in a 2 × 2 × 2 factorial design to 240 m sections of internal fence lines between wheat or barley crops and stubble/pasture fields over an 11‐month period to assess the impact on mouse populations.
  4. We confirmed that mice were eating the additional food and were accessing the water provided. We did not generate an outbreak of mice, but there were some significant effects from the experimental treatments. Additional food increased population size twofold and improved apparent survival. Both water and cover improved breeding performance. Food and cover increased apparent survival.
  5. Our findings confirm that access to food, water, and cover are necessary for outbreaks, but are not sufficient. There remain additional factors that are important in generating mouse plagues, particularly in a climatically variable agricultural environment.
  相似文献   
137.
138.
The n-fatty acids containing an even number of carbons (ECN-n-FAs) in higher plants are biosynthesised by repetitive addition of a two carbon unit from malonyl-ACP. The n-alkanes containing an odd number of carbon atoms (OCN-n-alkanes) are generally formed by the decarboxylation of ECN-n-FAs, but it is unknown how the less abundant even-carbon-numbered alkanes (ECN-n-alkanes) are biosynthesised in higher plants.There is a distinctive compositional pattern of incorporation of stable carbon (13C) and hydrogen (2H) isotopes in co-existing ECN- and OCN-n-alkanes in leaves of higher plants, such that the OCN n-alkanes are relatively enriched in 13C but relatively depleted in 2H against the ECN-n-alkanes. This is consistent with the OCN-n-fatty acids having a propionate precursor which is derived from reduction of pyruvate. A tentative pathway is presented with propionate produced by enzymatic reduction of pyruvate which is then thio-esterified with CoSH (coenzyme A thiol) in the chloroplast to form the terminal precursor molecule propionyl-CoA. This is then repetitively extended/elongated with the 2-carbon unit from malonyl-ACP to form the long chain OCN-n-fatty acids.The anteiso- and iso-alkanes in Nicotiana tabacum leaf waxes have previously been found to be systematically enriched in 13C compared with the n-alkanes by Grice et al. (2008). This is consistent with the isotopic composition of their putative respective precursors (pyruvate as precursor for n-alkanes, valine for iso-alkanes and isoleucine for anteiso-alkanes). The current study complements that of Grice et al. (2008) and looks at the distribution of hydrogen isotopes. The n-alkanes were found to be more enriched in deuterium (2H) than the iso-alkanes which in turn were more enriched than the anteiso-alkanes. We propose therefore that the depletion of 2H in the iso-alkanes, relative to the n-alkanes is the consequence of accepting highly 2H-depleted hydrogen atoms from NADPH during their biosynthesis. The anteiso-alkanes are further depleted again because there are three NADPH-derived hydrogen atoms in their precursor isoleucine, as compared with only one NADPH-derived hydrogen in valine, the precursor of the iso-alkanes.  相似文献   
139.
140.
Nicotiana tabacum is the only plant known to synthesise large quantities of anteiso- (3-methyl) alkanes and iso- (2-methyl) alkanes. We investigated the carbon isotope ratios of individual long-chain n-alkanes, anteiso- and iso-alkanes (in the C29-C33 carbon number range) extracted from tobacco grown in chambers under controlled conditions to confirm the pathway used by the tobacco plant to synthesise these particular lipids and to examine whether environmental data are recorded in these compounds. Tobacco was grown under differing temperatures, water availabilities and light intensities in order to control its stable carbon isotope ratios and evaluate isotopic fractionations associated with the synthesis of these particular lipids. The anteiso-alkanes were found to have a predominant even-carbon number distribution (maximising at C32), whereas the iso-alkanes exhibit an odd-carbon number distribution (maximising at C31). Iso-alkanes were relatively more abundant than the anteiso-alkanes and only two anteiso-alkanes (C30 and C32) were observed.The anteiso-alkanes and iso-alkanes were found to be enriched in 13C by 2.8-4.3‰ and 0-1.8‰ compared to the n-alkanes, respectively, consistent with different biosynthetic precursors. The assumed precursor for the odd-carbon-numbered iso-alkanes is iso-butyryl-CoA (a C4 unit derived from valine) followed by subsequent elongation of C2 units and then decarboxylation. The assumed precursor for even-carbon-numbered anteiso-alkanes is α-methylbutyryl-CoA (a C5 unit derived from isoleucine) and subsequent elongation by C2 units followed by decarboxylation. The ratio of carbon atoms derived from α-methylbutyryl-CoA and subsequent C2 units (from malonyl-CoA) is 1:5 for the biosynthesis of a C30anteiso-alkane. The ratio of carbon atoms derived from iso-butyryl-CoA and subsequent C2 units (from malonyl-CoA) is 4:25 for the synthesis of a C29iso-alkane. An order of 13C depletion n-alkanes > iso-alkanes > anteiso-alkanes is evident from compound specific isotope data. This trend can probably be attributed to the ratio of the two different sources of carbon atoms in the final wax components.Higher water availability generally results in more depleted stable carbon isotope ratios due to maximised discrimination during carboxylation, associated with less diffusional limitation. This was confirmed in the present study by compound specific isotope analyses of iso-alkanes, anteiso-alkanes and n-alkane lipids extracted from the tobacco leaves. Likewise, light intensity has been shown to influence plant bulk δ13C in previous studies. The carbon isotope ratios of n-alkanes in tobacco grown under low-light conditions were about 2‰ more depleted in 13C than those of lipids extracted from tobacco grown under elevated light conditions. A similar order of difference is observed for the iso-alkanes and anteiso-alkanes (1.8‰ and 1.9‰, respectively). A negligible depletion in carbon isotope ratios was observed for the iso-alkanes and anteiso-alkanes extracted from tobacco grown under elevated temperatures. These results are consistent with the work of Farquhar [Farquhar, G.D., 1980. Carbon isotope discrimination by plants: effects of carbon dioxide concentration and temperature via the ratio of intercellular and atmospheric CO2 concentrations. In: Pearman, G.I. (Ed.), Carbon Dioxide and Climate: Australian Research. Springer, Berlin, pp. 105-110] where temperature appears to have only a minor effect on plant bulk δ13C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号