首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   25篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   14篇
  2013年   16篇
  2012年   18篇
  2011年   24篇
  2010年   19篇
  2009年   10篇
  2008年   17篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
  1976年   1篇
  1968年   1篇
  1931年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
141.
A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.  相似文献   
142.
143.
Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega‐environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000–II) were evaluated for maturity‐related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six MEVs in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean‐growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe.  相似文献   
144.
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed.  相似文献   
145.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), two closely related diarrhoeagenic pathogens, induce actin rearrangements at the surface of infected host cells resulting in the formation of pseudopod-like structures termed pedestals beneath intimately attached bacteria. We have shown previously that N-WASP, a key integrator of signalling pathways that regulate actin polymerization via the Arp2/3 complex, is essential for pedestal formation induced by EPEC using N-WASP-defective cell lines. Here we show that actin pedestal formation initiated by EHEC also depends on N-WASP. Amino acid residues 226-274 of N-WASP are both necessary and sufficient to target N-WASP to sites of EHEC attachment. The recruitment mechanism thus differs from that used by EPEC, in which amino-terminal sequences of N-WASP mediate recruitment. For EPEC, recruitment of N-WASP downstream of Nck has been postulated to be mediated by WIP. However, we find a direct interaction of N-WASP with WIP to be dispensable for EPEC-induced pedestal formation and present data supporting an F-actin-dependent localization of WIP to actin pedestals induced by both EPEC and EHEC. In summary, our data show that EPEC and EHEC use different mechanisms to recruit N-WASP, which is essential for actin pedestal formation induced by both pathogens.  相似文献   
146.
Lim SR  Hertel KJ 《Molecular cell》2004,15(3):477-483
Differential recognition of exons by the spliceosome regulates gene expression and exponentially increases the complexity of metazoan proteomes. After definition of the exons, the spliceosome is activated by a series of sequential structural rearrangements. Formation of the first ATP-independent spliceosomal complex commits the pre-mRNA to the general splicing pathway. However, the time at which a commitment to a specific splice site choice and pairing is made is unknown. Here, we demonstrate that alternative splicing patterns are irreversibly chosen at a kinetic step different from the ATP-independent commitment to splicing. Splice sites become committed at the first ATP-dependent spliceosomal complex when rearrangements lock U2 snRNP onto the pre-mRNA. Thus, commitment to the splicing pathway and commitment to splice site pairing are separate steps during spliceosomal assembly, and ATP hydrolysis drives the irreversible juxtaposition of exons within the spliceosome.  相似文献   
147.
Cotranslational targeting directly couples synthesis of proteins to their translocation across or insertion into membranes. The signal recognition particle (SRP) and its membrane-bound receptor facilitate the targeting of the translation machinery, the ribosome, via recognition of a signal sequence in the nascent peptide chain. By combining structures of free and ribosome-bound SRP we derive a structural model describing the dynamic nature of SRP when it meets the ribosome.  相似文献   
148.
Stengel KF  Holdermann I  Wild K  Sinning I 《FEBS letters》2007,581(29):5671-5676
Two GTPases in the signal recognition particle and its receptor (FtsY) regulate protein targeting to the membrane by formation of a heterodimeric complex. The activation of both GTPases in the complex is essential for protein translocation. We present the crystal structure of chloroplast FtsY (cpFtsY) at 1.75 A resolution. The comparison with FtsY structures in different nucleotide bound states shows structural changes relevant for GTPase activation and provides insights in how cpFtsY is pre-organized for complex formation with cpSRP54. The structure contains an amino-terminal amphipathic helix similar to the membrane targeting sequence of Escherichia coli FtsY. In cpFtsY this motif is extended, which might be responsible for the enhanced attachment of the protein to the thylakoid membrane.  相似文献   
149.
Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise contributions of distinct Rho-GTPases, the phosphatidylinositol 3-kinases, and actin assembly regulators to c-Met-mediated actin reorganization are still elusive. Here we report that HGF-induced membrane ruffling and Listeria invasion mediated by the bacterial c-Met ligand internalin B (InlB) were significantly impaired but not abrogated upon genetic removal of either Cdc42 or pharmacological inhibition of phosphoinositide 3-kinase (PI3-kinase). While loss of Cdc42 or PI3-kinase function correlated with reduced HGF- and InlB-triggered Rac activation, complete abolishment of actin reorganization and Rac activation required the simultaneous inactivation of both Cdc42 and PI3-kinase signaling. Moreover, Cdc42 activation was fully independent of PI3-kinase activity, whereas the latter partly depended on Cdc42. Finally, Cdc42 function did not require its interaction with the actin nucleation-promoting factor N-WASP. Instead, actin polymerization was driven by Arp2/3 complex activation through the WAVE complex downstream of Rac. Together, our data establish an intricate signaling network comprising as key molecules Cdc42 and PI3-kinase, which converge on Rac-mediated actin reorganization essential for Listeria invasion and membrane ruffling downstream of c-Met.  相似文献   
150.
At least four of the intermediate states of Ca2+-ATPase (and presumably ion transport) can be trapped and characterized using water proton relaxation measurements. Gd3+ binds to two occluded Ca2+ transport sites on Ca2+-ATPase which have a low accessibility to solvent water. In the presence of the MgATP analogue Co(NH3)4AMPPCP, a new state for bound Gd3+ with one less water of hydration) is observed. In the presence of Co(NH3)4ATP or ATP, two additional states for bound Gd3+ are detected by NMR, the first of which probably represents an intermediate state of ATP hydrolysis. The latter is the most occluded Gd3+ site yet observed in these studies and corresponds to the highly occluded E1-P state observed with CrATP (Vilsen and Andersen, Biochim. Biophys. Acta 898, 313 (1987).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号